Jesper BjĶrklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210827/publications.pdf Version: 2024-02-01

		331670	414414
32	1,616	21	32
papers	citations	h-index	g-index
32	32	32	2292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 2017, 4, 170088.	5.3	268
2	Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytologist, 2017, 216, 728-740.	7.3	141
3	Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. International Journal of Climatology, 2011, 31, 324-335.	3.5	134
4	When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 2018, 197, 1-20.	3.0	131
5	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
6	Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 2014, 10, 877-885.	3.4	90
7	Dendroclimatology in Fennoscandia – from past accomplishments to future potential. Climate of the Past, 2010, 6, 93-114.	3.4	63
8	Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900Âyears. Climate Dynamics, 2015, 45, 933-947.	3.8	57
9	New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiology, 2017, 37, 976-983.	3.1	56
10	Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. Holocene, 2015, 25, 547-556.	1.7	54
11	The climatic drivers of normalized difference vegetation index and treeâ€ringâ€based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Global Ecology and Biogeography, 2018, 27, 1352-1365.	5.8	47
12	A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene, 2018, 28, 254-266.	1.7	45
13	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	9.5	45
14	Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia, 2020, 60, 125673.	2.2	36
15	Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theoretical and Applied Climatology, 2013, 113, 697-710.	2.8	35
16	RAPTOR: Row and position tracheid organizer in R. Dendrochronologia, 2018, 47, 10-16.	2.2	34
17	Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability. Climate Dynamics, 2020, 55, 579-594.	3.8	32
18	1200†years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Climate of the Past, 2016, 12, 1297-1312.	3.4	30

Jesper BjĶrklund

#	Article	IF	CITATIONS
19	A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium. Climate Dynamics, 2015, 44, 3141-3154.	3.8	29
20	Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia, 2020, 59, 125652.	2.2	26
21	Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia, 2021, 65, 125785.	2.2	23
22	Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI). Dendrochronologia, 2020, 60, 125664.	2.2	21
23	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	4.8	20
24	The Potential of Deriving Tree-Ring-Based Field Reconstructions of Droughts and Pluvials over Fennoscandia*,+. Journal of Climate, 2015, 28, 3453-3471.	3.2	19
25	Forests on drained agricultural peatland are potentially large sources of greenhouse gases – insights from a full rotation period simulation. Biogeosciences, 2016, 13, 2305-2318.	3.3	18
26	Microdensitometric records from humid subtropical China show distinct climate signals in earlywood and latewood. Dendrochronologia, 2020, 64, 125764.	2.2	15
27	The influence of elevational differences in absolute maximum density values on regional climate reconstructions. Trees - Structure and Function, 2015, 29, 1259-1271.	1.9	12

Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1.9

29	Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agricultural and Forest Meteorology, 2020, 287, 107981.	4.8	9
30	The utility of bulk wood density for tree-ring research. Dendrochronologia, 2021, 69, 125880.	2.2	7
31	Prospects for dendroanatomy in paleoclimatology – a case study on <i>Picea engelmannii</i> from the Canadian Rockies. Climate of the Past, 2022, 18, 1151-1168.	3.4	7
32	A Norway spruce tree-ring width chronology for the Common Era from the Central Scandinavian Mountains. Dendrochronologia, 2021, 70, 125896.	2.2	4