## Andreas Brust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210716/publications.pdf Version: 2024-02-01



ANDDEAS ROUST

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains.<br>Molecular and Cellular Proteomics, 2013, 12, 651-663.                                                                                                        | 3.8  | 83        |
| 2  | Cone snail venomics: from novel biology to novel therapeutics. Future Medicinal Chemistry, 2014, 6, 1659-1675.                                                                                                                                          | 2.3  | 72        |
| 3  | χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter<br>Inhibitor (Xen2174) for Pain. Journal of Medicinal Chemistry, 2009, 52, 6991-7002.                                                                       | 6.4  | 70        |
| 4  | High-Threshold Mechanosensitive Ion Channels Blocked by a Novel Conopeptide Mediate<br>Pressure-Evoked Pain. PLoS ONE, 2007, 2, e515.                                                                                                                   | 2.5  | 66        |
| 5  | Sugar-derived building blocks. Part 26.Part 25. See ref. 1. Hydrophilic pyrroles, pyridazines and diazepinones from d-fructose and isomaltulose. Green Chemistry, 2001, 3, 201-209.                                                                     | 9.0  | 56        |
| 6  | Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.                                                                                              | 4.4  | 51        |
| 7  | Phosphorylation and metabolism of sucrose and its five linkage-isomeric α-d-glucosyl-d-fructoses by<br>Klebsiella pneumoniae. Carbohydrate Research, 2001, 331, 149-161.                                                                                | 2.3  | 48        |
| 8  | Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic.<br>Angewandte Chemie - International Edition, 2015, 54, 1361-1364.                                                                           | 13.8 | 45        |
| 9  | Identifying Key Amino Acid Residues That Affect α-Conotoxin AuIB Inhibition of α3β4 Nicotinic<br>Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 34428-34442.                                                                      | 3.4  | 43        |
| 10 | Understanding the Molecular Basis of Toxin Promiscuity: The Analgesic Sea Anemone Peptide APETx2<br>Interacts with Acid-Sensing Ion Channel 3 and hERG Channels via Overlapping Pharmacophores.<br>Journal of Medicinal Chemistry, 2014, 57, 9195-9203. | 6.4  | 40        |
| 11 | Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the<br>Norepinephrine Transporter. Angewandte Chemie - International Edition, 2013, 52, 12020-12023.                                                            | 13.8 | 32        |
| 12 | Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor.<br>Scientific Reports, 2017, 7, 45466.                                                                                                               | 3.3  | 29        |
| 13 | Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin<br>A Mimetics with Antinociceptive Properties. Journal of Medicinal Chemistry, 2016, 59, 2381-2395.                                               | 6.4  | 28        |
| 14 | High-throughput synthesis of conopeptides: a safety-catch linker approach enabling disulfide formation in 96-well format. Journal of Peptide Science, 2007, 13, 133-141.                                                                                | 1.4  | 26        |
| 15 | Conopeptide ϕTIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor.<br>Journal of Biological Chemistry, 2013, 288, 1814-1827.                                                                                          | 3.4  | 23        |
| 16 | Discovery and mode of action of a novel analgesic Î <sup>2</sup> -toxin from the African spider Ceratogyrus<br>darlingi. PLoS ONE, 2017, 12, e0182848.                                                                                                  | 2.5  | 22        |
| 17 | Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1511-1527.                                                                                      | 4.6  | 19        |
| 18 | Biosynthetic pathways to dichloroimines; precursor incorporation studies on terpene metabolites in the tropical marine sponge Stylotella aurantium. Organic and Biomolecular Chemistry, 2004, 2, 949-956.                                               | 2.8  | 18        |

Andreas Brust

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.                                                                   | 2.4 | 18        |
| 20 | Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective<br>Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758. | 3.5 | 17        |
| 21 | Advanced precursors in marine biosynthetic study. Part 3: The biosynthesis of dichloroimines in the tropical marine sponge Stylotella aurantium. Tetrahedron Letters, 2003, 44, 327-330.                    | 1.4 | 15        |
| 22 | Evaluation of COMU as a coupling reagent for <i>in situ</i> neutralization Boc solid phase peptide synthesis. Journal of Peptide Science, 2012, 18, 199-207.                                                | 1.4 | 14        |
| 23 | Conversion of reducing carbohydrates into hydrophilic substituted imidazoles. Green Chemistry, 2013, 15, 2993.                                                                                              | 9.0 | 14        |
| 24 | Facile conversion of glycosyloxymethyl-furfural into Î <sup>3</sup> -keto-carboxylic acid building blocks towards a sustainable chemical industry. Green Chemistry, 2013, 15, 1368.                         | 9.0 | 14        |
| 25 | Vampire Venom: Vasodilatory Mechanisms of Vampire Bat (Desmodus rotundus) Blood Feeding. Toxins,<br>2019, 11, 26.                                                                                           | 3.4 | 11        |
| 26 | Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie, 2013, 125, 12242-12245.                                          | 2.0 | 9         |
| 27 | Reducing disaccharides and their 1,2-dicarbonyl intermediates as building blocks for nitrogen heterocycles. RSC Advances, 2014, 4, 5759.                                                                    | 3.6 | 8         |
| 28 | Inhibition of the norepinephrine transporter by χ onotoxin dendrimers. Journal of Peptide Science,<br>2016, 22, 280-289.                                                                                    | 1.4 | 8         |
| 29 | ERK and mTORC1 Inhibitors Enhance the Anti-Cancer Capacity of the Octpep-1 Venom-Derived Peptide in Melanoma BRAF(V600E) Mutations. Toxins, 2021, 13, 146.                                                  | 3.4 | 7         |
| 30 | Highâ€Throughput Synthesis of Peptide αâ€Thioesters: A Safety Catch Linker Approach Enabling Parallel<br>Hydrogen Fluoride Cleavage. ChemMedChem, 2014, 9, 1038-1046.                                       | 3.2 | 6         |
| 31 | â€~Messy' Processing of χ-conotoxin MrIA Generates Homologues with Reduced hNET Potency. Marine<br>Drugs, 2019, 17, 165.                                                                                    | 4.6 | 6         |
| 32 | Benzhydrylamine linker grafting: a strategy for the improved synthesis of <i>C</i> â€ŧerminal peptide<br>amides. Journal of Peptide Science, 2010, 16, 551-557.                                             | 1.4 | 4         |
| 33 | The α1-adrenoceptor inhibitor ϕTIA facilitates net hunting in piscivorous Conus tulipa. Scientific<br>Reports, 2019, 9, 17841.                                                                              | 3.3 | 4         |
| 34 | Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains.<br>Molecular and Cellular Proteomics, 2013, 12, 1488.                                                               | 3.8 | 1         |