Pengzhan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210671/publications.pdf Version: 2024-02-01

DENCZHAN LIU

#	Article	IF	CITATIONS
1	Acoustofluidicsâ€Assisted Fluorescence‧ERS Bimodal Biosensors. Small, 2020, 16, e2005179.	10.0	68
2	Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS Nano, 2020, 14, 6150-6163.	14.6	56
3	Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab on A Chip, 2020, 20, 3399-3409.	6.0	33
4	Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosensors and Bioelectronics, 2022, 196, 113730.	10.1	31
5	Sharp-edge acoustic microfluidics: Principles, structures, and applications. Applied Materials Today, 2021, 25, 101239.	4.3	18
6	Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Science Advances, 2022, 8, eabm2592.	10.3	17
7	Physical principle of enhancing the sensitivity of a metal oxide gas sensor using bulk acoustic waves. Journal of Applied Physics, 2018, 124, .	2.5	14
8	Controlled concentration and transportation of nanoparticles at the interface between a plain substrate and droplet. Sensors and Actuators B: Chemical, 2018, 274, 381-392.	7.8	14
9	Analyses of acoustofluidic field in ultrasonic needle–liquid–substrate system for micro-/nanoscale material concentration. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	13
10	A novel strategy to identify gases by a single catalytic combustible sensor working in its linear range. Sensors and Actuators B: Chemical, 2020, 321, 128514.	7.8	13
11	Controlled removal of micro/nanoscale particles in submillimeter-diameter area on a substrate. Review of Scientific Instruments, 2017, 88, 105003.	1.3	9
12	An internal miniature diversion channel-integrated piezoelectric airflow sensor. Smart Materials and Structures, 2020, 29, 087004.	3.5	9
13	2D acoustofluidic patterns in an ultrasonic chamber modulated by phononic crystal structures. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	7
14	Near-field electrospinning-enabled direct-write P(VDF-TrFE) nano/micro-fiber-based piezoelectric film for a high-performance airflow sensor. Sensors and Actuators A: Physical, 2022, 336, 113399.	4.1	7
15	Focused Ultrasound Assistance to the MOS Gas Sensor System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1009-1016.	3.0	6
16	Principle analysis for the micromanipulation probe-type ultrasonic nanomotor. Sensors and Actuators A: Physical, 2021, 318, 112524.	4.1	6
17	Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources. Chinese Physics B, 2022, 31, 044301.	1.4	3
18	Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction. Review of Scientific Instruments, 2022, 93, 025001.	1.3	3

Pengzhan Liu

#	Article	IF	CITATIONS
19	Modeling and Analysis of the Two-Dimensional Axisymmetric Acoustofluidic Fields in the Probe-Type and Substrate-Type Ultrasonic Micro/Nano Manipulation Systems. Micromachines, 2020, 11, 22.	2.9	2
20	A low temperature-rise and facile manipulation method for single micro objects at the air-substrate interface. Journal of Micromechanics and Microengineering, 2019, 29, 105007.	2.6	1
21	Ultrasonic trapping and collection of airborne particulate matter enabled by multiple acoustic streaming vortices. Journal of Micromechanics and Microengineering, 2021, 31, 124001.	2.6	1
22	Sophisticated acoustofluidic patterns generated in quasi-Sierpiński-carpet shaped chambers with heterogeneous radiation surface distributions. Physica Scripta, 2022, 97, 085209.	2.5	1