
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210658/publications.pdf Version: 2024-02-01

Μ/ΠΙΙΛΜΙΡΙΤΖ

#	Article	IF	CITATIONS
1	A Comprehensive Modeling Study of n-Heptane Oxidation. Combustion and Flame, 1998, 114, 149-177.	5.2	1,765
2	A comprehensive modeling study of iso-octane oxidation. Combustion and Flame, 2002, 129, 253-280.	5.2	1,211
3	Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proceedings of the Combustion Institute, 2011, 33, 193-200.	3.9	921
4	A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 2004, 36, 603-622.	1.6	833
5	A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame, 2009, 156, 181-199.	5.2	721
6	Recent progress in the development of diesel surrogate fuels. Progress in Energy and Combustion Science, 2011, 37, 330-350.	31.2	605
7	An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 2013, 160, 995-1011.	5.2	589
8	Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combustion and Flame, 1998, 114, 192-213.	5.2	511
9	Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Enginesâ€. Journal of Physical Chemistry A, 2006, 110, 6912-6922.	2.5	476
10	Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combustion and Flame, 2011, 158, 2338-2357.	5.2	466
11	A comprehensive chemical kinetic combustion model for the four butanol isomers. Combustion and Flame, 2012, 159, 2028-2055.	5.2	463
12	Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combustion and Flame, 2008, 154, 507-528.	5.2	399
13	Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combustion and Flame, 2010, 157, 893-908.	5.2	333
14	A wide range modeling study of dimethyl ether oxidation. International Journal of Chemical Kinetics, 1998, 30, 229-241.	1.6	313
15	A Multi-Zone Model for Prediction of HCCI Combustion and Emissions. , 0, , .		260
16	An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling. Energy & Fuels, 2011, 25, 5215-5223.	5.1	252
17	Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combustion and Flame, 2011, 158, 742-755.	5.2	238
18	Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics. Energy & Fuels, 2012, 26, 3284-3303.	5.1	232

#	Article	IF	CITATIONS
19	Detailed Chemical Kinetic Modeling of Cyclohexane Oxidationâ€. Journal of Physical Chemistry A, 2007, 111, 3761-3775.	2.5	192
20	A Comprehensive Chemical Kinetic Reaction Mechanism for Oxidation and Pyrolysis of Propane and Propene. Combustion Science and Technology, 1984, 37, 117-152.	2.3	185
21	Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Etherâ^'Air Flames. Journal of Physical Chemistry A, 2000, 104, 8194-8206.	2.5	182
22	Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock. Combustion and Flame, 1986, 63, 113-133.	5.2	178
23	A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock. Proceedings of the Combustion Institute, 1989, 22, 893-901.	0.3	169
24	A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combustion and Flame, 2017, 178, 111-134.	5.2	164
25	Effects of Oxygenates on Soot Processes in DI Diesel Engines: Experiments and Numerical Simulations. , 0, , .		160
26	Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame. Proceedings of the Combustion Institute, 2005, 30, 1111-1118.	3.9	155
27	Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. Proceedings of the Combustion Institute, 2015, 35, 249-257.	3.9	138
28	Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties. Energy & Fuels, 2016, 30, 1445-1461.	5.1	137
29	Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combustion and Flame, 2005, 140, 103-115.	5.2	134
30	Oxidation and combustion of the n-hexene isomers: A wide range kinetic modeling study. Combustion and Flame, 2008, 155, 756-772.	5.2	131
31	Development and validation of an n-dodecane skeletal mechanism forÂspray combustion applications. Combustion Theory and Modelling, 2014, 18, 187-203.	1.9	131
32	Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proceedings of the Combustion Institute, 2009, 32, 1067-1074.	3.9	128
33	Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combustion and Flame, 2012, 159, 3066-3078.	5.2	128
34	An experimental and modeling study of shock tube and rapid compression machine ignition of n-butylbenzene/air mixtures. Combustion and Flame, 2014, 161, 49-64.	5.2	126
35	A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel, 2012, 99, 143-153.	6.4	125
36	The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: Shock tube experiments and kinetic modeling. Combustion and Flame, 2009, 156, 2165-2172.	5.2	122

#	Article	IF	CITATIONS
37	Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic studyâ ⁻ †. Combustion and Flame, 1989, 77, 145-170.	5.2	119
38	Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions. Proceedings of the Combustion Institute, 2011, 33, 201-208.	3.9	119
39	Chemical kinetics of octane sensitivity in a spark-ignition engine. Combustion and Flame, 2017, 175, 2-15.	5.2	103
40	A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. Journal of Power Sources, 2009, 193, 855-858.	7.8	101
41	Detailed Kinetic Modeling Study of <i>n</i> -Pentanol Oxidation. Energy & amp; Fuels, 2012, 26, 6678-6685.	5.1	100
42	A kinetic modeling study on the oxidation of primary reference fuel–toluene mixtures including cross reactions between aromatics and aliphatics. Proceedings of the Combustion Institute, 2009, 32, 411-418.	3.9	95
43	A comprehensive experimental and modeling study of iso-pentanol combustion. Combustion and Flame, 2013, 160, 2712-2728.	5.2	95
44	A new comprehensive reaction mechanism for combustion of hydrocarbon fuels. Combustion and Flame, 1994, 99, 201-211.	5.2	93
45	Autoignition of gasoline and its surrogates in a rapid compression machine. Proceedings of the Combustion Institute, 2013, 34, 345-352.	3.9	92
46	Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combustion and Flame, 2014, 161, 1972-1983.	5.2	92
47	A high-pressure rapid compression machine study of n-propylbenzene ignition. Combustion and Flame, 2014, 161, 65-74.	5.2	91
48	Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling. Proceedings of the Combustion Institute, 1992, 24, 769-776.	0.3	89
49	A comprehensive combustion chemistry study of 2,5-dimethylhexane. Combustion and Flame, 2014, 161, 1444-1459.	5.2	88
50	Acetaldehyde oxidation in the negative temperature coefficient regime: Experimental and modeling results. International Journal of Chemical Kinetics, 1986, 18, 655-688.	1.6	85
51	A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	85
52	Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study. Combustion and Flame, 2014, 161, 680-695.	5.2	83
53	A kinetic modeling study of n-pentane oxidation in a well-stirred reactor. Combustion and Flame, 1988, 72, 45-62.	5.2	79
54	A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame. Proceedings of the Combustion Institute, 2011, 33, 233-241.	3.9	79

#	Article	IF	CITATIONS
55	Gaseous hydrocarbonî—,air detonations. Combustion and Flame, 1991, 84, 376-390.	5.2	78
56	A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion. , 2001, , .		78
57	Chemical kinetic modeling study of shock tube ignition of heptane isomers. International Journal of Chemical Kinetics, 2001, 33, 868-877.	1.6	77
58	The development of a detailed chemical kinetic mechanism for diisobutylene and comparison to shock tube ignition times. Proceedings of the Combustion Institute, 2007, 31, 377-384.	3.9	73
59	The Autoignition Chemistry of Paraffinic Fuels and Pro-Knock and Anti-Knock Additives: A Detailed Chemical Kinetic Study. , 1991, , .		71
60	A flow reactor study of neopentane oxidation at 8 atmospheres: experiments and modeling. Combustion and Flame, 1999, 118, 415-430.	5.2	71
61	Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures. Proceedings of the Combustion Institute, 2017, 36, 413-421.	3.9	71
62	The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines. SAE International Journal of Engines, 0, 10, 2305-2318.	0.4	71
63	Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters. Combustion and Flame, 2013, 160, 1583-1593.	5.2	70
64	A hierarchical single-pulse shock tube pyrolysis study of C2–C6 1-alkenes. Combustion and Flame, 2020, 219, 456-466.	5.2	64
65	Autoignition of gasoline surrogates at low temperature combustion conditions. Combustion and Flame, 2015, 162, 2272-2285.	5.2	63
66	Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics. Journal of Physical Chemistry A, 2015, 119, 7462-7480.	2.5	62
67	Kinetic modeling study of surrogate components for gasoline, jet and diesel fuels: C7-C11 methylated aromatics. Proceedings of the Combustion Institute, 2019, 37, 521-529.	3.9	60
68	A comprehensive chemical kinetic reaction mechanism for the oxidation of N-butane. Proceedings of the Combustion Institute, 1985, 20, 831-843.	0.3	59
69	Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine. , 0, , .		57
70	Methanol and hydrogen oxidation kinetics in water at supercritical states. Combustion and Flame, 1996, 106, 110-130.	5.2	56
71	An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes. Combustion and Flame, 2019, 206, 123-137.	5.2	53
72	Chemistry of Fuel Oxidation Preceding End-Gas Autoignition. Combustion Science and Technology, 1986, 50, 3-25.	2.3	51

#	Article	IF	CITATIONS
73	Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics. Combustion and Flame, 2017, 183, 358-371.	5.2	51
74	Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combustion and Flame, 2018, 189, 325-336.	5.2	49
75	Chemical Structures of Low-Pressure Premixed Methylcyclohexane Flames as Benchmarks for the Development of a Predictive Combustion Chemistry Model. Energy & Fuels, 2011, 25, 5611-5625.	5.1	48
76	Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combustion and Flame, 2017, 183, 372-385.	5.2	47
77	A comprehensive experimental and kinetic modeling study of 1- and 2-pentene. Combustion and Flame, 2021, 223, 166-180.	5.2	47
78	Development of Isopentanol Reaction Mechanism Reproducing Autoignition Character at High and Low Temperatures. Energy & Fuels, 2012, 26, 4871-4886.	5.1	46
79	Autoignition and preliminary heat release of gasoline surrogates and their blends with ethanol at engine-relevant conditions: Experiments and comprehensive kinetic modeling. Combustion and Flame, 2021, 228, 57-77.	5.2	46
80	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. Proceedings of the Combustion Institute, 2019, 37, 419-428.	3.9	45
81	An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. Combustion and Flame, 2011, 158, 1277-1287.	5.2	44
82	A counterflow diffusion flame study of branched octane isomers. Proceedings of the Combustion Institute, 2013, 34, 1015-1023.	3.9	44
83	An experimental and modeling study of surrogate mixtures of n-propyl- and n-butylbenzene in n-heptane to simulate n-decylbenzene ignition. Combustion and Flame, 2014, 161, 1460-1473.	5.2	44
84	Experimental and modeling study of burning velocities for alkyl aromatic components relevant to diesel fuels. Proceedings of the Combustion Institute, 2015, 35, 341-348.	3.9	43
85	Autoignition chemistry in a motored engine: An experimental and kinetic modeling study. Proceedings of the Combustion Institute, 1996, 26, 2669-2677.	0.3	41
86	Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions. Combustion and Flame, 2020, 216, 369-384.	5.2	41
87	A comprehensive experimental and improved kinetic modeling study on the pyrolysis and oxidation of propyne. Proceedings of the Combustion Institute, 2021, 38, 479-488.	3.9	41
88	Multi-fuel surrogate chemical kinetic mechanisms for real world applications. Physical Chemistry Chemical Physics, 2018, 20, 10588-10606.	2.8	40
89	PAH formation from jet stirred reactor pyrolysis of gasoline surrogates. Combustion and Flame, 2020, 219, 312-326.	5.2	39
90	Exploring gasoline oxidation chemistry in jet stirred reactors. Fuel, 2019, 236, 1282-1292.	6.4	38

#	Article	IF	CITATIONS
91	Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine. , 0, , .		36
92	Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios. , 2008, , .		36
93	Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions. SAE International Journal of Fuels and Lubricants, 0, 1, 12-25.	0.2	35
94	Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion. SAE International Journal of Fuels and Lubricants, 0, 10, 82-94.	0.2	35
95	A single pulse shock tube study of pentene isomer pyrolysis. Proceedings of the Combustion Institute, 2021, 38, 881-889.	3.9	35
96	Oxidation of Propane at Elevated Pressures: Experiments and Modelling. Combustion Science and Technology, 1991, 77, 95-125.	2.3	34
97	An experimental and modeling study of diethyl carbonate oxidation. Combustion and Flame, 2015, 162, 1395-1405.	5.2	34
98	Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. Proceedings of the Combustion Institute, 2017, 36, 469-477.	3.9	34
99	Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release. , 0, , .		33
100	An experimental and modeling study of the autoignition of 3-methylheptane. Proceedings of the Combustion Institute, 2013, 34, 335-343.	3.9	33
101	The role of correlations in uncertainty quantification of transportation relevant fuel models. Combustion and Flame, 2017, 180, 239-249.	5.2	33
102	A comparative reactivity study of 1-alkene fuels from ethylene to 1-heptene. Proceedings of the Combustion Institute, 2021, 38, 611-619.	3.9	32
103	The influence of iso-butene kinetics on the reactivity of di-isobutylene and iso-octane. Combustion and Flame, 2020, 222, 186-195.	5.2	31
104	Effects of Propane on Ignition of Methane –Ethane – Air Mixtures. Combustion Science and Technology, 1983, 33, 315-319.	2.3	30
105	Reduction of large detailed chemical kinetic mechanisms for autoignition using joint analyses of reaction rates and sensitivities. International Journal of Chemical Kinetics, 2007, 39, 181-196.	1.6	30
106	Co-optima fuels combustion: A comprehensive experimental investigation of prenol isomers. Fuel, 2019, 254, 115630.	6.4	30
107	Low temperature autoignition of 5-membered ring naphthenes: Effects of substitution. Combustion and Flame, 2019, 200, 387-404.	5.2	30
108	High-pressure shock tube study of ethanol oxidation: Ignition delay time and CO time-history measurements. Combustion and Flame. 2020, 212, 486-499.	5.2	30

#	Article	IF	CITATIONS
109	Effect of nitric oxide and exhaust gases on gasoline surrogate autoignition: iso-octane experiments and modeling. Combustion and Flame, 2022, 236, 111807.	5.2	29
110	Fuel and Additive Characterization for HCCI Combustion. , 0, , .		28
111	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. Energy & Fuels, 2012, 26, 4680-4689.	5.1	28
112	Structure and behavior of water-laden CH4/air counterflow diffusion flames. Combustion and Flame, 2018, 196, 439-451.	5.2	28
113	A pyrolysis study of allylic hydrocarbon fuels. International Journal of Chemical Kinetics, 2020, 52, 964-978.	1.6	26
114	Fuel molecular structure effect on autoignition of highly branched iso-alkanes at low-to-intermediate temperatures: Iso-octane versus iso-dodecane. Combustion and Flame, 2020, 214, 152-166.	5.2	26
115	An experimental and kinetic modeling study of NOx sensitization on methane autoignition and oxidation. Combustion and Flame, 2022, 238, 111746.	5.2	25
116	Detailed Kinetic Modeling of Autoignition Chemistry. , 0, , .		24
117	Modeling the combustion of high molecular weight fuels by a functional group approach. International Journal of Chemical Kinetics, 2012, 44, 257-276.	1.6	23
118	Autoignition of trans-decalin, a diesel surrogate compound: Rapid compression machine experiments and chemical kinetic modeling. Combustion and Flame, 2018, 194, 152-163.	5.2	23
119	Experimental and modeling study of C2–C4 alcohol autoignition at intermediate temperature conditions. Proceedings of the Combustion Institute, 2021, 38, 709-717.	3.9	23
120	Effects of Toluene Addition to Primary Reference Fuel at High Temperature. , 0, , .		22
121	Effects of isoalcohol blending with gasoline on autoignition behavior in a rapid compression machine: Isopropanol and isobutanol. Proceedings of the Combustion Institute, 2021, 38, 5655-5664.	3.9	22
122	An improved detailed chemical kinetic model for C3-C4 linear and iso-alcohols and their blends with gasoline at engine-relevant conditions. Proceedings of the Combustion Institute, 2021, 38, 415-423.	3.9	21
123	Formulation of an RP-1 pyrolysis surrogate from shock tube measurements of fuel and ethylene time histories. Fuel, 2013, 103, 1051-1059.	6.4	20
124	Autoignition response of n-butanol and its blends with primary reference fuel constituents of gasoline. Combustion and Flame, 2015, 162, 2466-2479.	5.2	20
125	Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition. Journal of Physical Chemistry A, 2016, 120, 7037-7044.	2.5	20
126	Auto-ignition study of FACE gasoline and its surrogates at advanced IC engine conditions. Proceedings of the Combustion Institute, 2019, 37, 4699-4707.	3.9	20

WILLIAM J PITZ

#	Article	IF	CITATIONS
127	Detailed Kinetic Modeling of HCCI Combustion with Isopentanol. SAE International Journal of Fuels and Lubricants, 0, 4, 257-270.	0.2	19
128	Sooting tendencies of 20 bio-derived fuels for advanced spark-ignition engines. Fuel, 2020, 276, 118059.	6.4	19
129	An experimental and kinetic modeling study of cyclopentane and dimethyl ether blends. Combustion and Flame, 2021, 225, 255-271.	5.2	19
130	New insights into fuel blending effects: Intermolecular chemical kinetic interactions affecting autoignition times and intermediate-temperature heat release. Combustion and Flame, 2021, 233, 111559.	5.2	19
131	A Collaborative Informatics Infrastructure for Multi-Scale Science. Cluster Computing, 2005, 8, 243-253.	5.0	18
132	Experimental and kinetic modeling study of the shock tube ignition of a large oxygenated fuel: Tri-propylene glycol mono-methyl ether. Combustion and Flame, 2015, 162, 2916-2927.	5.2	18
133	An experimental, theoretical, and modeling study of the ignition behavior of cyclopentanone. Proceedings of the Combustion Institute, 2019, 37, 657-665.	3.9	18
134	A detailed chemical kinetic modeling and experimental investigation of the low―and highâ€ŧemperature chemistry of nâ€butylcyclohexane. International Journal of Chemical Kinetics, 2021, 53, 465-475.	1.6	18
135	A kinetic study of ethylene oxidation in a well-stirred reactor. Proceedings of the Combustion Institute, 1989, 22, 863-871.	0.3	17
136	An Experimental and Modeling Study Into Using Normal and Isocetane Fuel Blends as a Surrogate for a Hydroprocessed Renewable Diesel Fuel. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	2.3	16
137	A detailed chemical kinetic model for gas phase combustion of TNT. Proceedings of the Combustion Institute, 2007, 31, 2343-2351.	3.9	15
138	A new detailed kinetic model for surrogate fuels: C3MechV3.3. Applications in Energy and Combustion Science, 2022, 9, 100043.	1.5	15
139	An Experimental and Modeling-Based Study Into the Ignition Delay Characteristics of Diesel Surrogate Binary Blend Fuels. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	14
140	Autoignition Chemistry of the Hexane Isomers: An Experimental and Kinetic Modeling Study. , 0, , .		13
141	Testing the validity of a mechanism describing the oxidation of binary n-heptane/toluene mixtures at engine operating conditions. Combustion and Flame, 2019, 199, 241-248.	5.2	13
142	A comprehensive experimental and kinetic modeling study of 1-hexene. Combustion and Flame, 2021, 232, 111516.	5.2	13
143	Chemical kinetic basis of synergistic blending for research octane number. Fuel, 2022, 307, 121865.	6.4	13
144	The reaction of hydroperoxy-propyl radicals with molecular oxygen. Proceedings of the Combustion Institute, 1994, 25, 783-791.	0.3	12

9

#	Article	IF	CITATIONS
145	The Ideal Gas Thermodynamics of Diesel Fuel Ingredients. I. Naphthalene Derivatives and Their Radicals. Journal of Physical and Chemical Reference Data, 2000, 29, 463-517.	4.2	12
146	Chemical kinetic modeling of ethene oxidation at low and intermediate temperatures. Proceedings of the Combustion Institute, 1991, 23, 203-210.	0.3	11
147	Autoignition of CRC diesel surrogates at low temperature combustion conditions: Rapid compression machine experiments and modeling. Combustion and Flame, 2020, 219, 178-197.	5.2	11
148	Measurements of Intermediate Species in Fuel-Rich Oxidation of Ethylene, Toluene, and <i>n</i> -Decane. Energy & amp; Fuels, 2021, 35, 14924-14940.	5.1	11
149	Chemical Kinetic Modeling of Hydrogen under Conditions Found in Internal Combustion Engines. Energy & Fuels, 1998, 12, 78-82.	5.1	10
150	An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel. International Journal of Engine Research, 2013, 14, 57-67.	2.3	10
151	Formation of PAHs, phenol, benzofuran, and dibenzofuran in a flow reactor from the oxidation of ethylene, toluene, and n-decane. Combustion and Flame, 2022, 241, 112136.	5.2	10
152	Portal-based Knowledge Environment for Collaborative Science. Concurrency Computation Practice and Experience, 2007, 19, 1703-1716.	2.2	9
153	Experimental and kinetic modeling study of tetralin: A naphtheno-aromatic fuel for gasoline, jet and diesel surrogates. Proceedings of the Combustion Institute, 2021, 38, 641-649.	3.9	9
154	Probing the antiknock effect of anisole through an ignition, speciation and modeling study of its blends with isooctane. Proceedings of the Combustion Institute, 2021, 38, 739-748.	3.9	9
155	Experimental and Kinetic Modeling Study of 3-Methyl-2-butenol (Prenol) Oxidation. Energy & Fuels, 2021, 35, 13999-14009.	5.1	9
156	Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative. SAE International Journal of Advances and Current Practices in Mobility, 0, 1, 1139-1147.	2.0	9
157	Chemical Kinetic Modeling of Combustion of Practical Hydrocarbon Fuels. , 0, , .		8
158	Shock tube investigation of high-temperature, extremely-rich oxidation of several co-optima biofuels for spark-ignition engines. Combustion and Flame, 2022, 236, 111794.	5.2	8
159	Probing intermediate temperature heat release in autoignition of C3-C4 iso-alcohol/gasoline blends. Combustion and Flame, 2021, 233, 111602.	5.2	7
160	Detailed chemical kinetic study of the effect of molecular structure on autoignition of fuel-air mixtures. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 159-162.	0.5	6
161	Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library. , 0, , .		6
162	Integration Strategies for Efficient Multizone Chemical Kinetics Models. SAE International Journal of Fuels and Lubricants, 0, 3, 241-255.	0.2	5

WILLIAM J PITZ

#	Article	IF	CITATIONS
163	A Multi-Component Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications. , 2014, , .		5
164	Implementation of multi-component diesel fuel surrogates and chemical kinetic mechanisms for engine combustion simulations. Transportation Engineering, 2021, 3, 100042.	4.2	5
165	An Experimental and Modeling-Based Study Into the Ignition Delay Characteristics of Diesel Surrogate Binary Blend Fuels. , 2011, , .		4
166	Hydrotreated Renewable Jet Fuel Ignition Delay Performance in a Military Diesel Engine: An Experimental and Modeling Study. , 2012, , .		4
167	Experimental and Kinetic Modeling Study of Laminar Burning Velocities of Cyclopentanone and Its Binary Mixtures with Ethanol and n-Propanol. Energy & Fuels, 2020, 34, 11408-11416.	5.1	4
168	Autoignition study of iso-cetane/tetralin blends at low temperature. Combustion and Flame, 2021, 228, 415-429.	5.2	4
169	An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires. Combustion and Flame, 2022, 242, 112206.	5.2	4
170	Numerical Modeling Capabilities for the Simulation of Toxic By-Products Formation in Combustion Processes. Combustion Science and Technology, 1994, 101, 383-396.	2.3	3
171	Development of the RIOT web service and information technologies to enable mechanism reduction for HCCI simulations. Journal of Physics: Conference Series, 2005, 16, 107-112.	0.4	3
172	An Experimental and Modeling Study Into Using Normal and ISO Cetane Fuel Blends as a Surrogate for a Hydro-Processed Renewable Diesel (HRD) Fuel. , 2013, , .		3
173	Experimental and Computational Study of n-Heptane Autoignition in a Direct-Injection Constant-Volume Combustion Chamber. Journal of Engineering for Gas Turbines and Power, 2014, 136, .	1.1	3
174	Development of a reduced tri-propylene glycol monomethyl ether–n-hexadecane–poly-aromatic hydrocarbon mechanism and its application for soot prediction. International Journal of Engine Research, 2016, 17, 969-982.	2.3	3
175	Quantifying Uncertainty in Predictions of Kinetically Modulated Combustion: Application to HCCI Using a Detailed Transportation Fuel Model. , 2018, , .		2
176	Ignition Delay and Heat-Release Rate for n-Heptane in a Direct-Injection Constant-Volume Combustion Chamber: Experiments and Computations. , 2013, , .		0