List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210583/publications.pdf Version: 2024-02-01

DETED VALIDEI

#	Article	IF	CITATIONS
1	Interleukin-6 as surrogate marker for imaging-based hypoxia dynamics in patients with head-and-neck cancers undergoing definitive chemoradiation—results from a prospective pilot trial. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1650-1660.	3.3	4
2	Severe hypoxia is a typical characteristic of human hepatocellular carcinoma: Scientific fact or fallacy?. Journal of Hepatology, 2022, 76, 975-980.	1.8	24
3	The value of plasma hypoxia markers for predicting imaging-based hypoxia in patients with head-and-neck cancers undergoing definitive chemoradiation. Clinical and Translational Radiation Oncology, 2022, 33, 120-127.	0.9	3
4	Physical and Photobiological Basics of wIRA-Hyperthermia. , 2022, , 35-53.		1
5	Thermography-Controlled, Contact-Free wIRA-Hyperthermia Combined with Hypofractionated Radiotherapy for Large-Sized Lesions of Unresectable, Locally Recurrent Breast Cancer. , 2022, , 83-95.		1
6	Temperature Profiles and Oxygenation Status in Human Skin and Subcutis Upon Thermography-Controlled wIRA-Hyperthermia. , 2022, , 69-80.		4
7	Biological validation of electron paramagnetic resonance (EPR) image oxygen thresholds in tissue. Journal of Physiology, 2021, 599, 1759-1767.	1.3	17
8	Revisiting the Warburg effect: historical dogma <i>versus</i> current understanding. Journal of Physiology, 2021, 599, 1745-1757.	1.3	350
9	Recommendation of Regional Hyperthermia in the Treatment of Breast Cancer. Integrative Cancer Therapies, 2021, 20, 153473542098860.	0.8	3
10	What Is the Meaning of an Oxygen Measurement?. Advances in Experimental Medicine and Biology, 2021, 1269, 301-308.	0.8	3
11	Oxygen Deprivation Modulates EGFR and PD-L1 in Squamous Cell Carcinomas of the Head and Neck. Frontiers in Oncology, 2021, 11, 623964.	1.3	4
12	Lactate-avid regulatory T cells: metabolic plasticity controls immunosuppression in tumour microenvironment. Signal Transduction and Targeted Therapy, 2021, 6, 171.	7.1	13
13	Oxygenation Status of Malignant Tumors vs. Normal Tissues: Critical Evaluation and Updated Data Source Based on Direct Measurements with pO2 Microsensors. Applied Magnetic Resonance, 2021, 52, 1451-1479.	0.6	25
14	Radiation-Associated Angiosarcoma of the Breast and Chest Wall Treated with Thermography-Controlled, Contactless wIRA-Hyperthermia and Hypofractionated Re-Irradiation. Cancers, 2021, 13, 3911.	1.7	8
15	ls tissue hypoxia the principal mechanism for immune evasion and malignant progression in hepatocellular carcinoma?. Journal of Hepatology, 2021, 75, 735-736.	1.8	1
16	Comment on Kronenfeld et al. Clinical Outcomes for Primary and Radiation-Associated Angiosarcoma of the Breast with Multimodal Treatment: Long-Term Survival Is Achievable. Cancers 2021, 13, 3814. Cancers, 2021, 13, 5707.	1.7	0
17	How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygenâ€dependent pathologies. Physiological Reports, 2020, 8, e14541.	0.7	23
18	wIRA-heating of piglet skin and subcutis <i>inÂvivo</i> : proof of accordance with ESHO criteria for superficial hyperthermia. International Journal of Hyperthermia, 2020, 37, 887-896.	1.1	3

#	Article	IF	CITATIONS
19	Hyperthermia Plus Re-Irradiation in the Management of Unresectable Locoregional Recurrence of Breast Cancer in Previously Irradiated Sites. Journal of Clinical Oncology, 2020, 38, 3576-3577.	0.8	5
20	Role of Hypoxia and the Adenosine System in Immune Evasion and Prognosis of Patients with Brain Metastases of Melanoma: A Multiplex Whole Slide Immunofluorescence Study. Cancers, 2020, 12, 3753.	1.7	11
21	Multipotent mesenchymal stromal cells are sensitive to thermic stress – potential implications for therapeutic hyperthermia. International Journal of Hyperthermia, 2020, 37, 430-441.	1.1	7
22	wIRA: hyperthermia as a treatment option for intracellular bacteria, with special focus on Chlamydiae and Mycobacteria. International Journal of Hyperthermia, 2020, 37, 373-383.	1.1	11
23	Combined wIRA-Hyperthermia and Hypofractionated Re-Irradiation in the Treatment of Locally Recurrent Breast Cancer: Evaluation of Therapeutic Outcome Based on a Novel Size Classification. Cancers, 2020, 12, 606.	1.7	35
24	Hypoxia Compromises Anti-Cancer Immune Responses. Advances in Experimental Medicine and Biology, 2020, 1232, 131-143.	0.8	129
25	Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression. Advances in Experimental Medicine and Biology, 2020, 1232, 169-176.	0.8	51
26	Thermal field formation during wIRA-hyperthermia: temperature measurements in skin and subcutis of piglets as a basis for thermotherapy of superficial tumors and local skin infections caused by thermosensitive microbial pathogens. International Journal of Hyperthermia, 2019, 36, 937-951.	1.1	10
27	The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. International Journal of Radiation Biology, 2019, 95, 912-919.	1.0	495
28	Radiochemotherapy combined with NK cell transfer followed by second-line PD-1 inhibition in aÂpatient with NSCLC stage IIIb inducing long-term tumor control: aÂcase study. Strahlentherapie Und Onkologie, 2019, 195, 352-361.	1.0	32
29	Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment Impeding Antitumor Immune Responses and Promoting Malignant Progression. Advances in Experimental Medicine and Biology, 2018, 1072, 171-175.	0.8	113
30	Impact of Temporal Heterogeneity of Acute Hypoxia on the Radiation Response of Experimental Tumors. Advances in Experimental Medicine and Biology, 2018, 1072, 189-194.	0.8	0
31	Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors. International Journal of Hyperthermia, 2018, 35, 26-36.	1.1	27
32	Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E990-E998.	3.3	49
33	Matching the reaction-diffusion simulation to dynamic [¹⁸ F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model. Physiological Measurement, 2017, 38, 188-204.	1.2	2
34	Tumor Oxygenation Status: Facts and Fallacies. Advances in Experimental Medicine and Biology, 2017, 977, 91-99.	0.8	17
35	Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. International Journal of Hyperthermia, 2017, 33, 227-236.	1.1	57
36	Accomplices of the Hypoxic Tumor Microenvironment Compromising Antitumor Immunity: Adenosine, Lactate, Acidosis, Vascular Endothelial Growth Factor, Potassium Ions, and Phosphatidylserine. Frontiers in Immunology, 2017, 8, 1887.	2.2	57

PETER VAUPEL

#	Article	IF	CITATIONS
37	Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary?. Frontiers in Oncology, 2017, 7, 132.	1.3	107
38	Master of Science (MSc) Program in Radiation Biology: An Interdepartmental Course Bridging the Gap between Radiation-Related Preclinical and Clinical Disciplines to Prepare Next-Generation Medical Scientists. Frontiers in Oncology, 2017, 7, 226.	1.3	3
39	Computational Simulation of Tumor Hypoxia Based on In Vivo Microvasculature Assessed in a Dorsal Skin Window Chamber. Advances in Experimental Medicine and Biology, 2017, 977, 109-117.	0.8	1
40	Oxygenation of Tumors. , 2017, , 3342-3346.		1
41	Commentary: A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Frontiers in Immunology, 2016, 7, 332.	2.2	14
42	Pathophysiological Basis for the Formation of the Tumor Microenvironment. Frontiers in Oncology, 2016, 6, 66.	1.3	152
43	Stress Response Leading to Resistance in Glioblastoma—The Need for Innovative Radiotherapy (iRT) Concepts. Cancers, 2016, 8, 15.	1.7	22
44	Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers. Advances in Experimental Medicine and Biology, 2016, 923, 77-86.	0.8	31
45	Downregulation of EGFR in hypoxic, diffusion-limited areas of squamous cell carcinomas of the head and neck. British Journal of Cancer, 2016, 115, 1351-1358.	2.9	16
46	Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. Advances in Experimental Medicine and Biology, 2016, 876, 177-183.	0.8	62
47	Hypoxia-Associated Marker CA IX Does Not Predict the Response of Locally Advanced Rectal Cancers to Neoadjuvant Chemoradiotherapy. Advances in Experimental Medicine and Biology, 2016, 876, 195-200.	0.8	0
48	Adenosine kann Strahlentherapie-vermittelte Immunantworten gegen Tumore konterkarieren. Strahlentherapie Und Onkologie, 2016, 192, 279-287.	1.0	36
49	Exploring the quantitative relationship between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and lactate oxidation in solid tumors. Physics in Medicine and Biology, 2015, 60, 2547-2571.	1.6	14
50	Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlentherapie Und Onkologie, 2015, 191, 875-882.	1.0	25
51	The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2015, 22, 878-880.	2.5	18
52	Can respiratory hyperoxia mitigate adenosine-driven suppression of antitumor immunity?. Annals of Translational Medicine, 2015, 3, 292.	0.7	5
53	Critical Role of Aberrant Angiogenesis in the Development of Tumor Hypoxia and Associated Radioresistance. Cancers, 2014, 6, 813-828.	1.7	43
54	Preclinical evaluation of parametric image reconstruction of [¹⁸ F]FMISO PET: correlation with <i>ex vivo</i> immunohistochemistry. Physics in Medicine and Biology, 2014, 59, 347-362.	1.6	8

#	Article	IF	CITATIONS
55	Hypoxia in Tumors: Pathogenesis-Related Classification, Characterization of Hypoxia Subtypes, and Associated Biological and Clinical Implications. Advances in Experimental Medicine and Biology, 2014, 812, 19-24.	0.8	108
56	Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes. Journal of Innovative Optical Health Sciences, 2014, 07, 1330005.	0.5	3
57	Heterogeneity in Tissue Oxygenation: From Physiological Variability in Normal Tissues to Pathophysiological Chaos in Malignant Tumours. Advances in Experimental Medicine and Biology, 2014, 812, 25-31.	0.8	20
58	Oxygenation of Tumors. , 2014, , 1-6.		0
59	Tumor Oxygenation: An Appraisal of Past and Present Concepts and a Look into the Future. Advances in Experimental Medicine and Biology, 2013, 789, 229-236.	0.8	7
60	Hypoxia, Lactate Accumulation, and Acidosis: Siblings or Accomplices Driving Tumor Progression and Resistance to Therapy?. Advances in Experimental Medicine and Biology, 2013, 789, 203-209.	0.8	54
61	Blood Flow and Oxygenation Status of Prostate Cancers. Advances in Experimental Medicine and Biology, 2013, 765, 299-305.	0.8	28
62	Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma. International Journal of Oncology, 2012, 41, 1260-1270.	1.4	45
63	Availability, not respiratory capacity governs oxygen consumption of solid tumors. International Journal of Biochemistry and Cell Biology, 2012, 44, 1477-1481.	1.2	48
64	Blood Flow and Oxygenation Status of Gastrointestinal Tumors. Advances in Experimental Medicine and Biology, 2012, 737, 133-138.	0.8	3
65	Radiosensitization of Normoxic and Hypoxic H1339 Lung Tumor Cells by Heat Shock Protein 90 Inhibition Is Independent of Hypoxia Inducible Factor-11±. PLoS ONE, 2012, 7, e31110.	1.1	26
66	Oxygen Transport to Tumors: Pathophysiology and Clinical Implications. , 2012, , 207-212.		0
67	Pathophysiological Barriers Impeding the Delivery of Heat Shock Protein (HSP)-Based Macromolecules and Nanotherapeutics to Solid Tumors. Heat Shock Proteins, 2012, , 185-199.	0.2	1
68	Changes in the fraction of total hypoxia and hypoxia subtypes in human squamous cell carcinomas upon fractionated irradiation: Evaluation using pattern recognition in microcirculatory supply units. Radiotherapy and Oncology, 2011, 101, 209-216.	0.3	17
69	Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors Using (immuno-)fluorescence techniques. Strahlentherapie Und Onkologie, 2011, 187, 260-266.	1.0	27
70	Acute Versus Chronic Hypoxia: Why a Simplified Classification is Simply Not Enough. International Journal of Radiation Oncology Biology Physics, 2011, 80, 965-968.	0.4	102
71	Oxygenation Status of Urogenital Tumors. Advances in Experimental Medicine and Biology, 2011, 701, 101-106.	0.8	3

72 Oxygenation of Tumors. , 2011, , 2734-2738.

#	Article	IF	CITATIONS
73	Quantitative Assessment of Hypoxia Kinetic Models by a Cross-Study of Dynamic ¹⁸ F-FAZA and ¹⁵ O-H ₂ O in Patients with Head and Neck Tumors. Journal of Nuclear Medicine, 2010, 51, 1386-1394.	2.8	32
74	HIF-Mediated Hypoxic Response is Missing in Severely Hypoxic Uterine Leiomyomas. Advances in Experimental Medicine and Biology, 2010, 662, 399-405.	0.8	21
75	Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic ¹⁸ F-FAZA and ¹⁵ O-H<inf>2</inf>O in head and neck tumors. , 2009, , .		0
76	Solid tumours arising from differently pre-oxygenated cells: Comparable growth rates despite dissimilar tissue oxygenation. International Journal of Radiation Biology, 2009, 85, 981-988.	1.0	1
77	Prognostic Potential Of The Pretherapeutic Tumor Oxygenation Status. Advances in Experimental Medicine and Biology, 2009, 645, 241-246.	0.8	57
78	Physiological Mechanisms of Treatment Resistance. Medical Radiology, 2009, , 273-290.	0.0	24
79	Pathophysiology of Solid Tumors. Medical Radiology, 2009, , 51-92.	0.0	43
80	Erythropoiesis-Stimulating Agents: Favorable Safety Profile When Used as Indicated. Strahlentherapie Und Onkologie, 2008, 184, 121-136.	1.0	26
81	Lack of Hypoxic Response in Uterine Leiomyomas despite Severe Tissue Hypoxia. Cancer Research, 2008, 68, 4719-4726.	0.4	85
82	Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis. Oncologist, 2008, 13, 21-26.	1.9	355
83	Strikingly High Respiratory Quotients: A Further Characteristic of the Tumor Pathophysiome. , 2008, 614, 121-125.		3
84	Relationship between hemoglobin levels and tumor oxygenation. , 2008, , 265-282.		2
85	Tumor hypoxia and therapeutic resistance. , 2008, , 283-305.		8
86	Detection and Characterization of Tumor Hypoxia Using pO2 Histography. Antioxidants and Redox Signaling, 2007, 9, 1221-1236.	2.5	628
87	Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews, 2007, 26, 225-239.	2.7	1,918
88	Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 2006, 82, 699-757.	1.0	561
89	Erythropoietin: effects on life expectancy in patients with cancer-related anaemia. Current Medical Research and Opinion, 2006, 22, S5-S13.	0.9	3
90	Abnormal Microvasculature and Defective Microcirculatory Function in Solid Tumors. , 2006, , 9-29.		14

#	Article	IF	CITATIONS
91	Endogenous Hypoxia Markers in Locally Advanced Cancers of the Uterine Cervix: Reality or Wishful Thinking?. Strahlentherapie Und Onkologie, 2006, 182, 501-510.	1.0	37
92	Impact of Hemoglobin Levels on Tumor Oxygenation: the Higher, the Better?. Strahlentherapie Und Onkologie, 2006, 182, 63-71.	1.0	120
93	Cancer-Related Anemia: Biological Findings, Clinical Implications and Impact on Quality of Life. Oncology, 2005, 68, 12-21.	0.9	47
94	Microregional Expression of Glucose Transporter-1 and Oxygenation Status: Lack of Correlation in Locally Advanced Cervical Cancers. Clinical Cancer Research, 2005, 11, 2768-2773.	3.2	69
95	Carbonic Anhydrase IX Expression and Tumor Oxygenation Status Do Not Correlate at the Microregional Level in Locally Advanced Cancers of the Uterine Cervix. Clinical Cancer Research, 2005, 11, 7220-7225.	3.2	69
96	Beyond Anaemia Management: Evolving Role of Erythropoietin Therapy in Neurological Disorders, Multiple Myeloma and Tumour Hypoxia Models. Oncology, 2005, 69, 22-30.	0.9	21
97	Effects of Recombinant Human Erythropoietin (rHuEPO) on Tumor Control in Patients with Cancer-Induced Anemia. Oncology Research and Treatment, 2005, 28, 216-221.	0.8	24
98	Hypoxia in Breast Cancer. , 2005, 566, 333-342.		71
99	Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfusion Clinique Et Biologique, 2005, 12, 5-10.	0.2	128
100	The Role of Hypoxiaâ€Induced Factors in Tumor Progression. Oncologist, 2004, 9, 10-17.	1.9	684
101	Tumor Hypoxia and Malignant Progression. Methods in Enzymology, 2004, 381, 335-354.	0.4	399
102	Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response. Oncologist, 2004, 9, 4-9.	1.9	625
103	Lack of Correlation between Expression of HIF-1α Protein and Oxygenation Status in Identical Tissue Areas of Squamous Cell Carcinomas of the Uterine Cervix. Cancer Research, 2004, 64, 5876-5881.	0.4	88
104	Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology, 2004, 14, 198-206.	1.0	845
105	Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet, The, 2004, 363, 992.	6.3	22
106	Oxygenation Status of Cervical Carcinomas Before and During Spinal Anesthesia for Application of Brachytherapy. Strahlentherapie Und Onkologie, 2003, 179, 633-640.	1.0	16
107	Impact of Anemia Prevention by Recombinant Human Erythropoietin on the Sensitivity of Xenografted Glioblastomas to Fractionated Irradiation. Strahlentherapie Und Onkologie, 2003, 179, 620-625.	1.0	34
108	Erythropoietin restores the anemia-induced reduction in radiosensitivity of experimental human tumors in nude mice. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1358-1362.	0.4	77

#	Article	IF	CITATIONS
109	Microcirculatory Function, Tissue Oxygenation, Microregional Redox Status and ATP Distribution in Tumors Upon Localized Infrared-A-Hyperthermia at 42°C. Advances in Experimental Medicine and Biology, 2003, 530, 237-247.	0.8	13
110	Evidence for and Against Hypoxia as the Primary Cause of Tumor Aggressiveness. Advances in Experimental Medicine and Biology, 2003, 510, 69-75.	0.8	13
111	Oxygenation of Cervix Cancers: Impact of Clinical and Pathological Parameters. Advances in Experimental Medicine and Biology, 2003, 510, 31-35.	0.8	10
112	Tumor Oxygenation and Its Relevance to Tumor Physiology and Treatment. Advances in Experimental Medicine and Biology, 2003, 510, 45-49.	0.8	19
113	O(2) extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues. International Journal of Oncology, 2003, 22, 795-8.	1.4	6
114	Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Research, 2003, 63, 7634-7.	0.4	73
115	Dynamics of tumor oxygenation and red blood cell flux in response to inspiratory hyperoxia combined with different levels of inspiratory hypercapnia. Radiotherapy and Oncology, 2002, 62, 77-85.	0.3	35
116	Oxygenation Status of Gynecologic Tumors: What is the Optimal Hemoglobin Level?. Strahlentherapie Und Onkologie, 2002, 178, 727-731.	1.0	117
117	Tumor hypoxia and therapeutic resistance. , 2002, , 127-146.		9
118	Treatment Resistance of Solid Tumors. Medical Oncology, 2001, 18, 243-260.	1.2	471
119	Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. Seminars in Oncology, 2001, 28, 29-35.	0.8	389
120	Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. Seminars in Oncology, 2001, 28, 29-35.	0.8	257
121	Cervical carcinoma: standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1999, 8, 55-62.	1.1	38
122	Tumor hypoxia in pelvic recurrences of cervical cancer. , 1998, 79, 365-369.		138
123	Modulation of tumor oxygenation. International Journal of Radiation Oncology Biology Physics, 1998, 42, 843-848.	0.4	70
124	Tumor hypoxia in pelvic recurrences of cervical cancer. International Journal of Cancer, 1998, 79, 365-369.	2.3	3
125	Blood Flow and Oxygenation Status of Head and Neck Carcinomas. Advances in Experimental Medicine and Biology, 1997, 428, 89-95.	0.8	15
126	Hypoxia and radiation response in human tumors. Seminars in Radiation Oncology, 1996, 6, 3-9.	1.0	247

PETER VAUPEL

#	Article	IF	CITATIONS
127	Tumor Oxygenation in Anemic Rats: Effects of Erythropoietin Treatment Versus Red Blood Cell Transfusion. Acta Oncológica, 1995, 34, 379-384.	0.8	50
128	Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. International Journal of Radiation Oncology Biology Physics, 1993, 26, 631-636.	0.4	145
129	Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 1993, 26, 45-50.	0.3	762
130	Correlations between 31 P-NMR Spectroscopy and Tissue O 2 Tension Measurements in a Murine Fibrosarcoma. Radiation Research, 1989, 120, 477.	0.7	96
131	Intracapillary oxyhemoglobin saturation of malignant tumors in humans. International Journal of Radiation Oncology Biology Physics, 1981, 7, 1397-1404.	0.4	120
132	Hypoxia in neoplastic tissue. Microvascular Research, 1977, 13, 399-408.	1.1	177
133	Effect of percentual water content in tissues and liquids on the diffusion coefficients of O2, CO2, N2, and H2. Pflugers Archiv European Journal of Physiology, 1976, 361, 201-204.	1.3	73
134	Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response. , 0, 9, 4.		1