
## Hiroko Satoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210447/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | High performance global exploration of isomers and isomerization channels on quantum chemical<br>potential energy surface of <scp>H<sub>5</sub>C<sub>2</sub>NO<sub>2</sub></scp> . Journal of<br>Computational Chemistry, 2021, 42, 192-204.              | 3.3 | 5         |
| 2  | G-RMSD: Root Mean Square Deviation Based Method for Three-Dimensional Molecular Similarity Determination. Bulletin of the Chemical Society of Japan, 2021, 94, 655-665.                                                                                   | 3.2 | 13        |
| 3  | Quantum chemical exploration of polymerized forms of polycyclic aromatic hydrocarbons: D6h tetramer and polymer of coronene. Chemical Physics Letters, 2020, 747, 137366.                                                                                 | 2.6 | 3         |
| 4  | Quantum chemical exploration of new π-electron systems: Capsule-formed dimers of polycyclic<br>aromatic hydrocarbons. Chemical Physics Letters, 2019, 725, 59-65.                                                                                         | 2.6 | 5         |
| 5  | The Rise of Catalyst Informatics: Towards Catalyst Genomics. ChemCatChem, 2019, 11, 1146-1152.                                                                                                                                                            | 3.7 | 72        |
| 6  | Quantum chemical exploration of dimeric forms of polycyclic aromatic hydrocarbons, naphthalene, perylene, and coronene. Chemical Physics Letters, 2019, 716, 147-154.                                                                                     | 2.6 | 6         |
| 7  | Exploration of Carbon Allotropes with Fourâ€membered Ring Structures on Quantum Chemical<br>Potential Energy Surfaces. Journal of Computational Chemistry, 2019, 40, 14-28.                                                                               | 3.3 | 8         |
| 8  | Global exploration of isomers and isomerization channels on the quantum chemical potential energy<br>surface of H <sub>3</sub> CNO <sub>3</sub> . Journal of Computational Chemistry, 2017, 38, 669-687.                                                  | 3.3 | 15        |
| 9  | Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its<br>Application on Quantum Mechanical Landscapes of <scp>d</scp> -Glucose Conformers. Journal of<br>Chemical Theory and Computation, 2016, 12, 5293-5308. | 5.3 | 20        |
| 10 | Handling of Highly Symmetric Molecules for Chemical Structure Elucidation in a CAST/CNMR System.<br>Journal of Computer Chemistry Japan, 2016, 14, 193-195.                                                                                               | 0.1 | 2         |
| 11 | A Prism Carbon Molecule C20. Chemistry Letters, 2015, 44, 712-714.                                                                                                                                                                                        | 1.3 | 12        |
| 12 | "Maizo"-chemistry Project: toward Molecular- and Reaction Discovery from Quantum Mechanical<br>Global Reaction Route Mappings. Journal of Computer Chemistry Japan, 2015, 14, 77-79.                                                                      | 0.1 | 6         |
| 13 | Prism-C2n carbon dimer, trimer, and nano-sheets: A quantum chemical study. Chemical Physics Letters, 2015, 633, 120-125.                                                                                                                                  | 2.6 | 14        |
| 14 | Wavy carbon: A new series of carbon structures explored by quantum chemical calculations.<br>Chemical Physics Letters, 2015, 639, 178-182.                                                                                                                | 2.6 | 12        |
| 15 | Computational Chemistry on Chemical Glycosylations. Trends in Glycoscience and Glycotechnology, 2014, 26, 11-27.                                                                                                                                          | 0.1 | 18        |
| 16 | Significant Substituent Effect on the Anomerization of Pyranosides: Mechanism of Anomerization and<br>Synthesis of a 1,2â€ <i>cis</i> Glucosamine Oligomer from the 1,2â€ <i>trans</i> Anomer. Chemistry - A<br>European Journal, 2014, 20, 124-132.      | 3.3 | 21        |
| 17 | Chemical Structure Elucidation from <sup>13</sup> C NMR Chemical Shifts: Efficient Data Processing<br>Using Bipartite Matching and Maximal Clique Algorithms. Journal of Chemical Information and<br>Modeling, 2014, 54, 1027-1035.                       | 5.4 | 28        |
| 18 | An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths. Lecture Notes in Computer Science, 2014, , 313-324.                                                                                                                          | 1.3 | 13        |

HIROKO SATOH

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Design of chemical glycosyl donors: does changing ring conformation influence selectivity/reactivity?. Chemical Society Reviews, 2013, 42, 4297.                                                                                                         | 38.1 | 71        |
| 20 | Unique Reactivity of Pyranosides with 2,3-trans Carbamate Group; Renaissance of Endocyclic Cleavage<br>Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 616-624.                                                  | 0.1  | 2         |
| 21 | Endocyclic Cleavage in Glycosides with 2,3- <i>trans</i> Cyclic Protecting Groups. Journal of the American Chemical Society, 2011, 133, 5610-5619.                                                                                                       | 13.7 | 62        |
| 22 | Substituent effects in endocyclic cleavage–recyclization anomerization reaction of pyranosides.<br>Tetrahedron, 2011, 67, 9966-9974.                                                                                                                     | 1.9  | 18        |
| 23 | Theoretical Investigation of Solvent Effects on Glycosylation Reactions: Stereoselectivity Controlled by Preferential Conformations of the Intermediate Oxacarbenium-Counterion Complex. Journal of Chemical Theory and Computation, 2010, 6, 1783-1797. | 5.3  | 137       |
| 24 | Lowâ€Barrier Pathway for <i>endo</i> â€Cleavage Induced Anomerization of Pyranosides with<br><i>N</i> â€Benzylâ€2,3â€ <i>trans</i> â€oxazolidinone Groups. European Journal of Organic Chemistry, 2009,<br>2009, 1127-1131.                              | 2.4  | 23        |
| 25 | Structural Revision of Terpenoids with a (3Z)-2-Methyl-3-penten-2-ol Moiety by the Synthesis of (23E)-<br>and (23Z)-Cycloart-23-ene-31²,25-diols. Journal of Organic Chemistry, 2007, 72, 4578-4581.                                                     | 3.2  | 31        |
| 26 | An Educational Environment for Chemical Contents with Haptic Interaction. , 2007, , .                                                                                                                                                                    |      | 4         |
| 27 | Algorithm for Advanced Canonical Coding of Planar Chemical Structures That Considers<br>Stereochemical and Symmetric Information. Journal of Chemical Information and Modeling, 2007, 47,<br>1734-1746.                                                  | 5.4  | 17        |
| 28 | Structural revision of peribysins C and D. Tetrahedron Letters, 2006, 47, 4623-4626.                                                                                                                                                                     | 1.4  | 26        |
| 29 | Construction of Basic Haptic Systems for Feeling the Intermolecular Force in Molecular Models.<br>Journal of Computer Aided Chemistry, 2006, 7, 38-47.                                                                                                   | 0.3  | 8         |
| 30 | [Special Issue: Fact Databases and Freewares] ChemoJun: Open Source Chemical Graphics Library.<br>Journal of Computer Aided Chemistry, 2006, 7, 141-149.                                                                                                 | 0.3  | 1         |
| 31 | Effective consideration of ring structures in CAST/CNMR for highly accurate 13C NMR chemical shift prediction. Tetrahedron, 2005, 61, 7431-7437.                                                                                                         | 1.9  | 16        |
| 32 | CAST/CNMR: highly accurate 13C NMR chemical shift prediction system considering stereochemistry.<br>Tetrahedron, 2003, 59, 4539-4547.                                                                                                                    | 1.9  | 27        |
| 33 | Knowledge Discovery on Chemical Reactivity from Experimental Reaction Information. Lecture Notes in Computer Science, 2003, , 470-477.                                                                                                                   | 1.3  | 1         |
| 34 | Extended CAST Coding Method for Exact Search of Stereochemical Structures. Journal of Computer<br>Aided Chemistry, 2002, 3, 48-55.                                                                                                                       | 0.3  | 11        |
| 35 | Representation of Molecular Configurations by CAST Coding Method. Journal of Chemical<br>Information and Computer Sciences, 2001, 41, 1106-1112.                                                                                                         | 2.8  | 20        |
| 36 | Classification and Prediction of Reagents' Roles by FRAU System with Self-Organizing Neural Network<br>Model. Bulletin of the Chemical Society of Japan, 2000, 73, 1955-1965.                                                                            | 3.2  | 5         |

HIROKO SATOH

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel Canonical Coding Method for Representation of Three-Dimensional Structures. Journal of Chemical Information and Computer Sciences, 2000, 40, 622-630.                                                                                                                              | 2.8 | 26        |
| 38 | A Novel Method for Characterization of Three-Dimensional Reaction Fields Based on Electrostatic and<br>Steric Interactions toward the Goal of Quantitative Analysis and Understanding of Organic<br>Reactions. Journal of Chemical Information and Computer Sciences, 1999, 39, 671-678. | 2.8 | 15        |
| 39 | Classification of Organic Reactions:  Similarity of Reactions Based on Changes in the Electronic<br>Features of Oxygen Atoms at the Reaction Sites1. Journal of Chemical Information and Computer<br>Sciences, 1998, 38, 210-219.                                                        | 2.8 | 52        |
| 40 | Development of a Program for Construction of a Starting Material Library for AIPHOS Journal of Chemical Software, 1998, 4, 101-111.                                                                                                                                                      | 0.2 | 5         |
| 41 | Further Development of a Reaction Generator in the SOPHIA System for Organic Reaction Prediction.<br>Knowledge-Guided Addition of Suitable Atoms and/or Atomic Groups to Product Skeleton. Journal of<br>Chemical Information and Computer Sciences, 1996, 36, 173-184.                  | 2.8 | 32        |
| 42 | SOPHIA, a Knowledge Base-Guided Reaction Prediction System - Utilization of a Knowledge Base Derived from a Reaction Database. Journal of Chemical Information and Computer Sciences, 1995, 35, 34-44.                                                                                   | 2.8 | 81        |