Felismina T C Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9210374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a biosensor for phosphorylated Tau 181 protein detection in Early-Stage Alzheimer's disease. Bioelectrochemistry, 2022, 145, 108057.	2.4	12
2	Paper-based aptasensor for colorimetric detection of osteopontin. Analytica Chimica Acta, 2022, 1198, 339557.	2.6	13
3	Recent Advances in the Selection of Cancer-Specific Aptamers for the Development of Biosensors. Current Medicinal Chemistry, 2022, 29, 5850-5880.	1.2	9
4	Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. Chemosensors, 2022, 10, 92.	1.8	5
5	Potentiometric Biosensor Based on Artificial Antibodies for an Alzheimer Biomarker Detection. Applied Sciences (Switzerland), 2022, 12, 3625.	1.3	10
6	Colorimetric Paper-Based Sensors against Cancer Biomarkers. Sensors, 2022, 22, 3221.	2.1	18
7	Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchemical Journal, 2022, 181, 107756.	2.3	4
8	Electrochemical Point-of Care (PoC) Determination of Interleukin-6 (IL-6) Using a Pyrrole (Py) Molecularly Imprinted Polymer (MIP) on a Carbon-Screen Printed Electrode (C-SPE). Analytical Letters, 2021, 54, 2611-2623.	1.0	28
9	Development of an electrochemical biosensor for Galectin-3 detection in point-of-care. Microchemical Journal, 2021, 164, 105992.	2.3	18
10	Plastic Antibody of Polypyrrole/Multiwall Carbon Nanotubes on Screen-Printed Electrodes for Cystatin C Detection. Biosensors, 2021, 11, 175.	2.3	16
11	Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection. Chemosensors, 2021, 9, 238.	1.8	18
12	Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Mikrochimica Acta, 2021, 188, 334.	2.5	7
13	Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS Omega, 2021, 6, 29268-29290.	1.6	40
14	Nanocellulose- based biosensor for colorimetric detection of glucose. Sensing and Bio-Sensing Research, 2020, 29, 100368.	2.2	22
15	Paper-Based Platform with an In Situ Molecularly Imprinted Polymer for β-Amyloid. ACS Omega, 2020, 5, 12057-12066.	1.6	27
16	Self-powered and self-signalled autonomous electrochemical biosensor applied to cancinoembryonic antigen determination. Biosensors and Bioelectronics, 2019, 140, 111320.	5.3	28
17	Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors. Biosensors and Bioelectronics, 2019, 137, 72-81.	5.3	14
18	Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection. Journal of Electroanalytical Chemistry, 2019, 855, 113611.	1.9	9

Felismina T C Moreira

#	Article	IF	CITATIONS
19	Redox probe-free readings of a \hat{l}^2 -amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors and Actuators B: Chemical, 2018, 264, 1-9.	4.0	43
20	A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination. Biosensors and Bioelectronics, 2018, 107, 94-102.	5.3	21
21	Homemade 3-carbon electrode system for electrochemical sensing: Application to microRNA detection. Microchemical Journal, 2018, 138, 35-44.	2.3	25
22	Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection. Scientific Reports, 2018, 8, 10205.	1.6	19
23	Antibody Biomimetic Material Made of Pyrrole for CA 15-3 and Its Application as Sensing Material in Ion-Selective Electrodes for Potentiometric Detection. Biosensors, 2018, 8, 8.	2.3	25
24	Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes. PLoS ONE, 2018, 13, e0196656.	1.1	41
25	Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease. Materials Science and Engineering C, 2017, 79, 541-549.	3.8	24
26	Smart naturally plastic antibody based on poly(α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection. Sensors and Actuators B: Chemical, 2017, 240, 229-238.	4.0	33
27	Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosensors and Bioelectronics, 2017, 87, 607-614.	5.3	88
28	Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors, 2017, 17, 523.	2.1	62
29	Plastic antibody for the electrochemical detection of bacterial surface proteins. Sensors and Actuators B: Chemical, 2016, 233, 697-704.	4.0	45
30	Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosensors and Bioelectronics, 2016, 80, 621-630.	5.3	148
31	Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sensors and Actuators B: Chemical, 2016, 223, 927-935.	4.0	87
32	Sol-Gel-Based Biosensing Applied to Medicinal Science. Current Topics in Medicinal Chemistry, 2015, 15, 245-255.	1.0	10
33	Detection of cardiac biomarker proteins using a disposable based on a molecularly imprinted polymer grafted onto graphite. Mikrochimica Acta, 2015, 182, 975-983.	2.5	26
34	Novel sensory surface for creatine kinase electrochemical detection. Biosensors and Bioelectronics, 2014, 56, 217-222.	5.3	54
35	Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sensors and Actuators B: Chemical, 2014, 196, 123-132.	4.0	85
36	New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes. Materials Science and Engineering C, 2014, 43, 481-487.	3.8	12

#	Article	IF	CITATIONS
37	Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochimica Acta, 2013, 107, 481-487.	2.6	81
38	Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosensors and Bioelectronics, 2013, 45, 237-244.	5.3	86
39	Novel biosensing device for point-of-care applications with plastic antibodies grown on Au-screen printed electrodes. Sensors and Actuators B: Chemical, 2013, 182, 733-740.	4.0	31
40	Haemoglobin smart plastic antibody material tailored with charged binding sites on silica nanoparticles: its application as an ionophore in potentiometric transduction. RSC Advances, 2013, 3, 26210.	1.7	8
41	Novel optical PVC probes for on-site detection/determination of fluoroquinolones in a solid/liquid interface: Application to the determination of Norfloxacin in aquaculture water. Biosensors and Bioelectronics, 2012, 36, 199-206.	5.3	17
42	Surface Imprinting Approach on Screen Printed Electrodes Coated with Carboxylated PVC for Myoglobin detection with Electrochemical Transduction. Procedia Engineering, 2012, 47, 865-868.	1.2	10
43	The effect of method, standard and sample components on the total antioxidant capacity of commercial waters assessed by optical conventional assays. Food Chemistry, 2012, 134, 564-571.	4.2	5
44	Molecularly-Imprinted Materials for Potentiometric Transduction: Application to the Antibiotic Enrofloxacin. Analytical Letters, 2011, 44, 2107-2123.	1.0	14
45	Sulphonamide-imprinted sol–gel materials as ionophores in potentiometric transduction. Materials Science and Engineering C, 2011, 31, 1784-1790.	3.8	17
46	Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction. Biosensors and Bioelectronics, 2011, 26, 4760-4766.	5.3	55
47	Artificial antibodies for troponin T by its imprinting on the surface of multiwalled carbon nanotubes: Its use as sensory surfaces. Biosensors and Bioelectronics, 2011, 28, 243-250.	5.3	72
48	Biomimetic norfloxacin sensors made of molecularly-imprinted materials for potentiometric transduction. Mikrochimica Acta, 2011, 172, 15-23.	2.5	29
49	Selective recognition in potentiometric transduction of amoxicillin by molecularly imprinted materials. European Food Research and Technology, 2011, 232, 39-50.	1.6	18
50	Ciprofloxacin-imprinted polymeric receptors as ionophores for potentiometric transduction. Electrochimica Acta, 2011, 56, 2017-2023.	2.6	32
51	Biomimetic sensors of molecularly-imprinted polymers for chlorpromazine determination. Materials Science and Engineering C, 2011, 31, 1121-1128.	3.8	23
52	Biomimetic Sensor Potentiometric System for Doxycycline Antibiotic Using a Molecularly Imprinted Polymer as an Artificial Recognition Element. Sensor Letters, 2011, 9, 1654-1660.	0.4	16
53	Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosensors and Bioelectronics, 2010, 26, 566-574.	5.3	54
54	New potentiometric sensors based on two competitive recognition sites for determining tetracycline residues using flow-through system. Procedia Engineering, 2010, 5, 1200-1203.	1.2	13

#	Article	IF	CITATIONS
55	New biomimetic sensors for the determination of tetracycline in biological samples: Batch and flow mode operations. Analytical Methods, 2010, 2, 2039.	1.3	32
56	Sulfadiazine-Potentiometric Sensors for Flow and Batch Determinations of Sulfadiazine in Drugs and Biological Fluids. Analytical Sciences, 2009, 25, 365-371.	0.8	38
57	Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosensors and Bioelectronics, 2008, 24, 591-599.	5.3	47