Miroslav Miletin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 16-25.	2.0	113
2	Far-Red-Absorbing Cationic Phthalocyanine Photosensitizers: Synthesis and Evaluation of the Photodynamic Anticancer Activity and the Mode of Cell Death Induction. Journal of Medicinal Chemistry, 2015, 58, 1736-1749.	2.9	95
3	Magnesium Azaphthalocyanines: An Emerging Family of Excellent Red-Emitting Fluorophores. Inorganic Chemistry, 2012, 51, 4215-4223.	1.9	85
4	Cationic azaphthalocyanines bearing aliphatic tertiary amino substituents—Synthesis, singlet oxygen production and spectroscopic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 59-69.	2.0	71
5	Influence of electron-withdrawing and electron-donating substituents on photophysical properties of azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 316-322.	2.0	60
6	Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen. Physical Chemistry Chemical Physics, 2010, 12, 2555.	1.3	41
7	Synthesis, Properties and <i>In Vitro</i> Photodynamic Activity of Waterâ€soluble Azaphthalocyanines and Azanaphthalocyanines. Photochemistry and Photobiology, 2010, 86, 168-175.	1.3	39
8	Selfâ€Assembled Azaphthalocyanine Dimers with Higher Fluorescence and Singlet Oxygen Quantum Yields than the Corresponding Monomers. European Journal of Organic Chemistry, 2008, 2008, 3260-3263.	1.2	38
9	Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. Journal of Organic Chemistry, 2014, 79, 2082-2093.	1.7	37
10	Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy. Australian Journal of Chemistry, 2009, 62, 425.	0.5	36
11	Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Dalton Transactions, 2015, 44, 13220-13233.	1.6	36
12	Synthesis and singlet oxygen production of azaphthalocyanines bearing functional derivatives of carboxylic acid. Journal of Porphyrins and Phthalocyanines, 2006, 10, 122-131.	0.4	35
13	Solid-Phase Synthesis of Azaphthalocyanineâ 'Oligonucleotide Conjugates and Their Evaluation As New Dark Quenchers of Fluorescence. Bioconjugate Chemistry, 2010, 21, 1872-1879.	1.8	32
14	Redâ€Emitting Dyes with Photophysical and Photochemical Properties Controlled by pH. Chemistry - A European Journal, 2011, 17, 14273-14282.	1.7	29
15	Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. Journal of Medicinal Chemistry, 2020, 63, 7616-7632.	2.9	27
16	Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines. Physical Chemistry Chemical Physics, 2014, 16, 5440.	1.3	26
17	Influence of protonation of peripheral substituents on photophysical and photochemical properties of tetrapyrazinoporphyrazines. Journal of Porphyrins and Phthalocyanines, 2010, 14, 582-591.	0.4	25
18	Peripheral substitution as a tool for tuning electron-accepting properties of phthalocyanine analogs in intramolecular charge transfer. Dalton Transactions, 2015, 44, 6961-6971.	1.6	25

MIROSLAV MILETIN

#	Article	IF	CITATIONS
19	Synthesis, Separation and UV/Vis Spectroscopy of Pyrazinoâ€quinoxalinoâ€porphyrazine Macrocycles. European Journal of Organic Chemistry, 2007, 2007, 4535-4542.	1.2	24
20	Azaphthalocyanines: Red Fluorescent Probes for Cations. Chemistry - A European Journal, 2013, 19, 5025-5028.	1.7	24
21	Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues. Dalton Transactions, 2012, 41, 11651.	1.6	23
22	Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN [–] in Biological Materials. ACS Sensors, 2019, 4, 1552-1559.	4.0	22
23	Azaphthalocyanines Containing Pyrazine Rings with Focus on the Alkylheteroatom, Aryl and Heteroaryl Substitution and Properties Important in Photodynamic Therapy. Macroheterocycles, 2008, 1, 21-29.	0.9	22
24	Synthesis of new azaphthalocyanine dark quencher and evaluation of its quenching efficiency with different fluorophores. Tetrahedron, 2011, 67, 5956-5963.	1.0	18
25	Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: synthesis and in vitro photodynamic studies of a water-soluble, non-aggregating photosensitizer. RSC Advances, 2016, 6, 10064-10077.	1.7	17
26	OFFâ€ONâ€OFF Redâ€Emitting Fluorescent Indicators for a Narrow pH Window. Chemistry - A European Journal, 2017, 23, 1795-1804.	1.7	17
27	Photodynamic properties of aza-analogues of phthalocyanines. Photochemical and Photobiological Sciences, 2018, 17, 1749-1766.	1.6	16
28	Heteroatom-substituted tetra(3,4-pyrido)porphyrazines: a stride toward near-infrared-absorbing macrocycles. Organic and Biomolecular Chemistry, 2015, 13, 5608-5612.	1.5	15
29	Tetra[6,7]quinoxalinoporphyrazines: The Effect of an Additional Benzene Ring on Photophysical and Photochemical Properties. European Journal of Organic Chemistry, 2010, 2010, 732-739.	1.2	13
30	Efficient Synthesis of a Wideâ€Range Absorbing Azaphthalocyanine Dark Quencher and Its Application to Dualâ€Labeled Oligonucleotide Probes for Quantitative Realâ€Time Polymerase Chain Reactions. Chemistry - A European Journal, 2018, 24, 9658-9666.	1.7	12
31	Synthesis of Unsymmetrical Alkyloxy/Aryloxyâ€azaphthalocyanines Based on a Transetherification Reaction. European Journal of Organic Chemistry, 2011, 2011, 5879-5886.	1.2	11
32	The effect of the number of carbohydrate moieties on the azaphthalocyanine properties. Dalton Transactions, 2012, 41, 10596.	1.6	10
33	Magnesium tetrapyrazinoporphyrazines: tuning of the p <i>K</i> _a of red-fluorescent pH indicators. Dalton Transactions, 2019, 48, 6162-6173.	1.6	7
34	Self-assembly of azaphthalocyanine–oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Organic Chemistry Frontiers, 2020, 7, 445-456.	2.3	5
35	Tetra(pyrazino[2,3- <i>b</i>]pyrazino)porphyrazines: Synthesis, absorption, photophysical and electrochemical properties of strongly electron-deficient macrocycles. Journal of Porphyrins and Phthalocyanines, 2017, 21, 302-310.	0.4	4
36	Comparison of Quenching Efficiencies in Long Triple-Labeled and Double-Labeled TaqMan Oligodeoxynucleotide Probes. Bioconjugate Chemistry, 2022, 33, 788-794.	1.8	3

MIROSLAV MILETIN

#	Article	IF	CITATIONS
37	Synthesis and Jâ€Dimer Formation of Tetrapyrazinoporphyrazines with Different Functional Groups for Potential Biomolecular Probe Applications. ChemPlusChem, 2020, 85, 527-537.	1.3	2
38	OFF-ON-OFF Red-Emitting Fluorescent Indicators for a Narrow pH Window. Chemistry - A European Journal, 2017, 23, 1727-1727.	1.7	1
39	Magnesium Phthalocyanines and Tetrapyrazinoporphyrazines: The Influence of a Solvent and a Delivery System on a Dissociation of Central Metal in Acidic Media. Pharmaceuticals, 2022, 15, 409.	1.7	1
40	The chromatographic behaviour of new doubleâ€labelled oligodeoxynucleotide probes containing azaphthalocyanine dye as a quencher with respect to evaluation of their purity. Biomedical Chromatography, 2021, 35, e5033.	0.8	0