Lisa Topolnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9209711/publications.pdf Version: 2024-02-01

LISA TODOLNIK

#	Article	IF	CITATIONS
1	Partial Cortical Deafferentation Promotes Development of Paroxysmal Activity. Cerebral Cortex, 2003, 13, 883-893.	2.9	149
2	Inhibitory control of hippocampal inhibitory neurons. Frontiers in Neuroscience, 2012, 6, 165.	2.8	115
3	Dendritic Inhibition Provided by Interneuron-Specific Cells Controls the Firing Rate and Timing of the Hippocampal Feedback Inhibitory Circuitry. Journal of Neuroscience, 2014, 34, 4534-4547.	3.6	114
4	Compartmentalized Ca2+ Channel Regulation at Divergent Mossy-Fiber Release Sites Underlies Target Cell-Dependent Plasticity. Neuron, 2006, 52, 497-510.	8.1	105
5	mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones. Journal of Physiology, 2006, 575, 115-131.	2.9	103
6	Developmental Expression of Ca ²⁺ -Permeable AMPA Receptors Underlies Depolarization-Induced Long-Term Depression at Mossy Fiber–CA3 Pyramid Synapses. Journal of Neuroscience, 2007, 27, 11651-11662.	3.6	91
7	Forskolin induction of lateâ€LTP and upâ€regulation of 5′ TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. Journal of Neurochemistry, 2008, 106, 1160-1174.	3.9	80
8	Staufen1 Regulation of Protein Synthesis-Dependent Long-Term Potentiation and Synaptic Function in Hippocampal Pyramidal Cells. Molecular and Cellular Biology, 2008, 28, 2896-2907.	2.3	75
9	Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo. European Journal of Neuroscience, 2003, 18, 486-496.	2.6	70
10	Differential Regulation of Metabotropic Glutamate Receptor- and AMPA Receptor-Mediated Dendritic Ca2+ Signals by Presynaptic and Postsynaptic Activity in Hippocampal Interneurons. Journal of Neuroscience, 2005, 25, 990-1001.	3.6	69
11	Synapse-specific inhibitory control of hippocampal feedback inhibitory circuit. Frontiers in Cellular Neuroscience, 2010, 4, 130.	3.7	64
12	State-Dependent cAMP Sensitivity of Presynaptic Function Underlies Metaplasticity in a Hippocampal Feedforward Inhibitory Circuit. Neuron, 2008, 60, 980-987.	8.1	63
13	Connectivity and network state-dependent recruitment of long-range VIP-GABAergic neurons in the mouse hippocampus. Nature Communications, 2018, 9, 5043.	12.8	63
14	Dendritic Calcium Nonlinearities Switch the Direction of Synaptic Plasticity in Fast-Spiking Interneurons. Journal of Neuroscience, 2014, 34, 3864-3877.	3.6	62
15	Input-Specific Synaptic Location and Function of the α5 GABA _A Receptor Subunit in the Mouse CA1 Hippocampal Neurons. Journal of Neuroscience, 2019, 39, 788-801.	3.6	54
16	Depolarization-Induced Long-Term Depression at Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses. Journal of Neuroscience, 2003, 23, 9786-9795.	3.6	51
17	Activity-Dependent Compartmentalized Regulation of Dendritic Ca2+ Signaling in Hippocampal Interneurons. Journal of Neuroscience, 2009, 29, 4658-4663.	3.6	48
18	Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas. Frontiers in Neural Circuits, 2020, 14, 32.	2.8	37

LISA TOPOLNIK

#	Article	IF	CITATIONS
19	Synaptic Mechanisms Underlying the Network State-Dependent Recruitment of VIP-Expressing Interneurons in the CA1 Hippocampus. Cerebral Cortex, 2020, 30, 3667-3685.	2.9	36
20	Cortical disinhibitory circuits: cell types, connectivity and function. Trends in Neurosciences, 2021, 44, 643-657.	8.6	35
21	The role of inhibitory circuits in hippocampal memory processing. Nature Reviews Neuroscience, 2022, 23, 476-492.	10.2	35
22	Ageâ€dependent remodelling of inhibitory synapses onto hippocampal CA1 oriensâ€lacunosum moleculare interneurons. Journal of Physiology, 2011, 589, 4885-4901.	2.9	30
23	Cell typeâ€specific and activityâ€dependent dynamics of action potentialâ€evoked Ca ²⁺ signals in dendrites of hippocampal inhibitory interneurons. Journal of Physiology, 2011, 589, 1957-1977.	2.9	29
24	Sex Differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of Adult Mouse Offspring Exposed to Maternal Immune Activation. Frontiers in Cellular Neuroscience, 2020, 14, 558181.	3.7	27
25	Transcriptomic profile of the subiculum-projecting VIP GABAergic neurons in the mouse CA1 hippocampus. Brain Structure and Function, 2019, 224, 2269-2280.	2.3	25
26	Non-linear calcium signalling and synaptic plasticity in interneurons. Current Opinion in Neurobiology, 2019, 54, 98-103.	4.2	24
27	Target-specific alterations in the VIP inhibitory drive to hippocampal GABAergic cells after status epilepticus. Experimental Neurology, 2017, 292, 102-112.	4.1	23
28	Dendritic calcium mechanisms and longâ€ŧerm potentiation in cortical inhibitory interneurons. European Journal of Neuroscience, 2012, 35, 496-506.	2.6	21
29	Coordination of dendritic inhibition through local disinhibitory circuits. Frontiers in Synaptic Neuroscience, 2015, 7, 5.	2.5	19
30	Calcium Dynamics in Dendrites of Hippocampal CA1 Interneurons in Awake Mice. Frontiers in Cellular Neuroscience, 2019, 13, 98.	3.7	18
31	Simple platform for chronic imaging of hippocampal activity during spontaneous behaviour in an awake mouse. Scientific Reports, 2017, 7, 43388.	3.3	17
32	Using a Semi-Automated Strategy to Develop Multi-Compartment Models That Predict Biophysical Properties of Interneuron-Specific 3 (IS3) Cells in Hippocampus. ENeuro, 2016, 3, ENEURO.0087-16.2016.	1.9	15
33	Functional compartmentalisation and regulation of postsynaptic Ca2+ transients in inhibitory interneurons. Cell Calcium, 2012, 52, 339-346.	2.4	14
34	Dendritic signaling in inhibitory interneurons: local tuning via group I metabotropic glutamate receptors. Frontiers in Physiology, 2012, 3, 259.	2.8	13
35	Mechanisms of Supralinear Calcium Integration in Dendrites of Hippocampal CA1 Fast-Spiking Cells. Frontiers in Synaptic Neuroscience, 2018, 10, 47.	2.5	13
36	Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium, 2019, 77, 49-57.	2.4	13

LISA TOPOLNIK

#	Article	IF	CITATIONS
37	Alterations in Intrinsic and Synaptic Properties of Hippocampal CA1 VIP Interneurons During Aging. Frontiers in Cellular Neuroscience, 2020, 14, 554405.	3.7	10
38	Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience, 2022, 489, 44-56.	2.3	6
39	Enhanced motor cortex output and disinhibition in asymptomatic female mice with C9orf72 genetic expansion. Cell Reports, 2022, 40, 111043.	6.4	6
40	Two-photon Calcium Imaging in Neuronal Dendrites in Brain Slices. Journal of Visualized Experiments, 2018, , .	0.3	4
41	Structural analysis of the microglia–interneuron interactions in the CA1 hippocampal area of the APP/PS1 mouse model of Alzheimer's disease. Journal of Comparative Neurology, 2022, 530, 1423-1437.	1.6	4
42	Editorial: Spring Hippocampal Research Conference and Beyond. Frontiers in Molecular Neuroscience, 2021, 14, 773308.	2.9	0