
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9209560/publications.pdf Version: 2024-02-01

SANKU MALUK

#	Article	IF	CITATIONS
1	Single-Molecule Force Probing of RGD-Binding Integrins on Pancreatic Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 7671-7679.	4.0	8
2	Modified Bovine Milk Exosomes for Doxorubicin Delivery to Triple-Negative Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 2163-2175.	2.3	31
3	Material Properties, Dissolution and Time Evolution of PEGylated Lipid-Shelled Microbubbles: Effects of the Polyethylene Glycol Hydrophilic Chain Configurations. Ultrasound in Medicine and Biology, 2022, 48, 1720-1732.	0.7	4
4	pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Molecular Pharmaceutics, 2021, 18, 87-100.	2.3	31
5	Nanoparticles for Delivering Natural Product Chemotherapeutics to Breast Cancer Cells. , 2021, , 283-294.		1
6	Biopolymeric systems for diagnostic applications. , 2021, , 705-722.		2
7	Methods and Techniques to Facilitate the Development of Clostridium novyi NT as an Effective, Therapeutic Oncolytic Bacteria. Frontiers in Microbiology, 2021, 12, 624618.	1.5	6
8	Dynamic cellular biomechanics in responses to chemotherapeutic drug in hypoxia probed by atomic force spectroscopy. Oncotarget, 2021, 12, 1165-1177.	0.8	6
9	Polymeric Composite Matrix with High Biobased Content as Pharmaceutically Relevant Molecular Encapsulation and Release Platform. ACS Applied Materials & Interfaces, 2021, 13, 40229-40248.	4.0	10
10	Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS Applied Bio Materials, 2021, 4, 1450-1460.	2.3	29
11	Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS Omega, 2021, 6, 27654-27667.	1.6	6
12	Functional Applications of Polyarginine-Hyaluronic Acid-Based Electrostatic Complexes. Bioelectricity, 2020, 2, 158-166.	0.6	3
13	Hypoxia-Responsive, Polymeric Nanocarriers for Targeted Drug Delivery to Estrogen Receptor-Positive Breast Cancer Cell Spheroids. Molecular Pharmaceutics, 2020, 17, 4312-4322.	2.3	32
14	Chemical Architecture of Block Copolymers Differentially Abrogate Cardiotoxicity and Maintain the Anticancer Efficacy of Doxorubicin. Molecular Pharmaceutics, 2020, 17, 4676-4690.	2.3	17
15	Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Molecular Pharmaceutics, 2020, 17, 2849-2863.	2.3	40
16	Echogenic exosomes as ultrasound contrast agents. Nanoscale Advances, 2020, 2, 3411-3422.	2.2	11
17	Microenvironment-sensing, nanocarrier-mediated delivery of combination chemotherapy for pancreatic cancer. Journal of Cell Communication and Signaling, 2019, 13, 407-420.	1.8	14
18	Exosomes as Drug Carriers for Cancer Therapy. Molecular Pharmaceutics, 2019, 16, 1789-1798.	2.3	135

#	Article	IF	CITATIONS
19	CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2019, 18, 788-800.	1.9	27
20	Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. International Journal of Molecular Sciences, 2019, 20, 6056.	1.8	81
21	Size-Transformable, Multifunctional Nanoparticles from Hyperbranched Polymers for Environment-Specific Therapeutic Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 1354-1365.	2.6	26
22	PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids and Surfaces B: Biointerfaces, 2019, 174, 126-135.	2.5	45
23	Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors. Colloids and Surfaces B: Biointerfaces, 2018, 163, 225-235.	2.5	37
24	Acoustic Characterization of Echogenic Polymersomes Prepared From Amphiphilic Block Copolymers. Ultrasound in Medicine and Biology, 2018, 44, 447-457.	0.7	8
25	Nucleus-Targeted, Echogenic Polymersomes for Delivering a Cancer Stemness Inhibitor to Pancreatic Cancer Cells. Biomacromolecules, 2018, 19, 4122-4132.	2.6	27
26	Tissueâ€Penetrating, Hypoxiaâ€Responsive Echogenic Polymersomes For Drug Delivery To Solid Tumors. Chemistry - A European Journal, 2018, 24, 12490-12494.	1.7	30
27	Real-time tracking of single-molecule collagenase on native collagen and partially structured collagen-mimic substrates. Chemical Communications, 2018, 54, 10248-10251.	2.2	1
28	3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel. Materials, 2018, 11, 454.	1.3	192
29	Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjugate Chemistry, 2017, 28, 857-868.	1.8	118
30	Real-time monitoring of conformational transitions of single-molecule histone deacetylase 8 with nanocircuits. Chemical Communications, 2017, 53, 3307-3310.	2.2	3
31	Nuclear Localizing Peptide-Conjugated, Redox-Sensitive Polymersomes for Delivering Curcumin and Doxorubicin to Pancreatic Cancer Microtumors. Molecular Pharmaceutics, 2017, 14, 1916-1928.	2.3	44
32	Electronic Detection of Single Cancer Cells with Graphene Field Effect Transistors. Biophysical Journal, 2017, 112, 461a.	0.2	1
33	Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. Journal of the Acoustical Society of America, 2017, 142, 3670-3676.	0.5	27
34	Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids. Bioconjugate Chemistry, 2016, 27, 1830-1838.	1.8	60
35	Sequential culture on biomimetic nanoclay scaffolds forms threeâ€dimensional tumoroids. Journal of Biomedical Materials Research - Part A, 2016, 104, 1591-1602.	2.1	22
36	Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polymer Chemistry, 2016, 7, 4151-4154.	1.9	12

SANKU MALLIK

#	Article	IF	CITATIONS
37	Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids. ACS Omega, 2016, 1, 952-962.	1.6	27
38	Biomarkers and Targeted Therapy in Pancreatic Cancer. Biomarkers in Cancer, 2016, 8s1, BIC.S34414.	3.6	44
39	Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells. Biomacromolecules, 2016, 17, 2507-2513.	2.6	110
40	Acridine Orange Conjugated Polymersomes for Simultaneous Nuclear Delivery of Gemcitabine and Doxorubicin to Pancreatic Cancer Cells. Bioconjugate Chemistry, 2016, 27, 762-771.	1.8	28
41	Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme. PLoS ONE, 2016, 11, e0152467.	1.1	5
42	Mechanism of N-Acylthiourea-mediated Activation of Human Histone Deacetylase 8 (HDAC8) at Molecular and Cellular Levels. Journal of Biological Chemistry, 2015, 290, 6607-6619.	1.6	19
43	Polymersome-based drug-delivery strategies for cancer therapeutics. Therapeutic Delivery, 2015, 6, 521-534.	1.2	119
44	Bridging of a substrate between cyclodextrin and an enzyme's active site pocket triggers a unique mode of inhibition. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 141-149.	1.1	6
45	Thermodynamics of Binding of Structurally Similar Ligands to Histone Deacetylase 8 Sheds Light on Challenges in the Rational Design of Potent and Isozyme-Selective Inhibitors of the Enzyme. Biochemistry, 2014, 53, 7445-7458.	1.2	12
46	Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Computational Mechanics, 2014, 53, 413-435.	2.2	50
47	Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials, 2014, 35, 6482-6497.	5.7	81
48	Hexanoic Acid and Polyethylene Glycol Double Grafted Amphiphilic Chitosan for Enhanced Gene Delivery: Influence of Hydrophobic and Hydrophilic Substitution Degree. Molecular Pharmaceutics, 2014, 11, 982-994.	2.3	54
49	pH-Triggered Echogenicity and Contents Release from Liposomes. Molecular Pharmaceutics, 2014, 11, 4059-4068.	2.3	31
50	MMP-9 Responsive PEG Cleavable Nanovesicles for Efficient Delivery of Chemotherapeutics to Pancreatic Cancer. Molecular Pharmaceutics, 2014, 11, 2390-2399.	2.3	91
51	Urinary concentrations of ADAM 12 from breast cancer patients pre- and post-surgery vs. cancer-free controls: a clinical study for biomarker validation. Journal of Negative Results in BioMedicine, 2014, 13, 5.	1.4	7
52	A disintegrin and metalloproteinase-12 (ADAM12): Function, roles in disease progression, and clinical implications. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4445-4455.	1.1	51
53	Polymer-Coated Echogenic Lipid Nanoparticles with Dual Release Triggers. Biomacromolecules, 2013, 14, 841-853.	2.6	32
54	Polymeric Nanoparticles with Sequential and Multiple FRET Cascade Mechanisms for Multicolor and Multiplexed Imaging. Small, 2013, 9, 2129-2139.	5.2	59

#	Article	IF	CITATIONS
55	Kinetic and Thermodynamic Rationale for Suberoylanilide Hydroxamic Acid Being a Preferential Human Histone Deacetylase 8 Inhibitor As Compared to the Structurally Similar Ligand, Trichostatin A. Biochemistry, 2013, 52, 8139-8149.	1.2	11
56	Differentiation of Prostate Cancer Cells Using Flexible Fluorescent Polymers. Analytical Chemistry, 2012, 84, 17-20.	3.2	12
57	In vitro measurement of attenuation and nonlinear scattering from echogenic liposomes. Ultrasonics, 2012, 52, 962-969.	2.1	29
58	Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells. Analyst, The, 2012, 137, 5487.	1.7	1
59	Glycosaminoglycan-Mediated Selective Changes in the Aggregation States, Zeta Potentials, and Intrinsic Stability of Liposomes. Langmuir, 2012, 28, 16115-16125.	1.6	5
60	Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles. ACS Nano, 2012, 6, 4854-4863.	7.3	10
61	Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes. Molecular Pharmaceutics, 2012, 9, 2554-2564.	2.3	32
62	Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Materials Science and Engineering C, 2012, 32, 1307-1313.	3.8	41
63	Advances in Biomarker Research for Pancreatic Cancer. Current Pharmaceutical Design, 2012, 18, 2439-2451.	0.9	64
64	Fluorescent Liposomes for Differential Interactions with Glycosaminoglycans. Analytical Chemistry, 2011, 83, 5989-5995.	3.2	18
65	Natural Product Inhibitors and Activators of Histone Deacetylases. , 2011, , 273-309.		0
66	Characterization of free radicals formed from COX-catalyzed DGLA peroxidation. Free Radical Biology and Medicine, 2011, 50, 1163-1170.	1.3	20
67	Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosensors and Bioelectronics, 2011, 26, 3103-3109.	5.3	106
68	Fluorescent water soluble polymers for isozyme-selective interactions with matrix metalloproteinase-9. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2007-2010.	1.0	6
69	Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sensors and Actuators B: Chemical, 2011, 155, 8-18.	4.0	86
70	Stabilization of anionic and neutral forms of a fluorophoric ligand at the active site of human carbonic anhydrase I. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1965-1973.	1.1	0
71	Light-mediated and H-bond facilitated liposomal release: the role of lipid head groups in release efficiency. Tetrahedron Letters, 2010, 51, 529-532.	0.7	17
72	Microwave-assisted synthesis of triple-helical, collagen-mimetic lipopeptides. Nature Protocols, 2010, 5, 39-50.	5.5	15

#	Article	IF	CITATIONS
73	Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9. Chemical Communications, 2010, 46, 3209.	2.2	18
74	Characterization of novel radicals from COX-catalyzed arachidonic acid peroxidation. Free Radical Biology and Medicine, 2009, 47, 568-576.	1.3	27
75	Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9. Bioconjugate Chemistry, 2009, 20, 1332-1339.	1.8	66
76	Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2373-2376.	1.0	49
77	Novel bis-(arylsulfonamide) hydroxamate-based selective MMP inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3333-3337.	1.0	18
78	Mechanistic Studies of the Triggered Release of Liposomal Contents by Matrix Metalloproteinase-9. Journal of the American Chemical Society, 2008, 130, 10633-10642.	6.6	73
79	Matrix Metalloproteinase-Assisted Triggered Release of Liposomal Contents. Bioconjugate Chemistry, 2008, 19, 57-64.	1.8	57
80	Partial filling multiple injection affinity capillary electrophoresis (PFMIACE) to estimate binding constants of receptors to ligands. Talanta, 2007, 71, 192-201.	2.9	21
81	Intrinsic selectivity in binding of matrix metalloproteinaseâ€7 to differently charged lipid membranes. FEBS Letters, 2007, 581, 5723-5726.	1.3	16
82	Surface-Derivatized Nanoceria with Human Carbonic Anhydrase II Inhibitors and Fluorophores:  A Potential Drug Delivery Device. Journal of Physical Chemistry C, 2007, 111, 8437-8442.	1.5	65
83	A strategy for designing "multi-prong―enzyme inhibitors by incorporating selective ligands to the liposomal surface. Chemical Communications, 2007, , 3377.	2.2	10
84	Recognition of isozymes via lanthanide ion incorporated polymerized liposomes. Chemical Communications, 2007, , 4495.	2.2	3
85	Structural Analysis of Charge Discrimination in the Binding of Inhibitors to Human Carbonic Anhydrases I and II. Journal of the American Chemical Society, 2007, 129, 5528-5537.	6.6	62
86	Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles. Analytical Biochemistry, 2007, 361, 109-119.	1.1	15
87	New fluorescent probes for carbonic anhydrases. Chemical Communications, 2007, , 2723.	2.2	13
88	Energetic rationale for an unexpected and abrupt reversal of guanidinium chloride-induced unfolding of peptide deformylase. Protein Science, 2007, 17, 11-15.	3.1	4
89	Formulation of photocleavable liposomes and the mechanism of their content release. Organic and Biomolecular Chemistry, 2006, 4, 1730.	1.5	73
90	Ultrahigh Resolution Crystal Structures of Human Carbonic Anhydrases I and II Complexed with "Two-Prong―Inhibitors Reveal the Molecular Basis of High Affinity. Journal of the American Chemical Society, 2006, 128, 3011-3018.	6.6	70

#	Article	IF	CITATIONS
91	Evaluation of two lanthanide complexes for qualitative and quantitative analysis of target proteins via partial least squares analysis. Analytical Biochemistry, 2005, 336, 64-74.	1.1	10
92	Design of photocleavable lipids and their application in liposomal "uncorking― Chemical Communications, 2005, , 3021.	2.2	39
93	"Uncorking―of liposomes by matrix metalloproteinase-9. Chemical Communications, 2005, , 999-1001.	2.2	38
94	Inhibition of matrix metalloproteinase-9 by "multi-prong―surface binding groups. Chemical Communications, 2005, , 2549.	2.2	10
95	Molecular Basis for the Origin of Differential Spectral and Binding Profiles of Dansylamide with Human Carbonic Anhydrase I and IIâ€. Biochemistry, 2005, 44, 3673-3682.	1.2	14
96	Spacer-Based Selectivity in the Binding of "Two-Prong―Ligands to Recombinant Human Carbonic Anhydrase lâ€. Biochemistry, 2005, 44, 3211-3224.	1.2	34
97	Solid-Supported Synthesis of Polymerizable Lanthanide-Ion Chelating Lipids for Protein Detection. Inorganic Chemistry, 2005, 44, 2234-2244.	1.9	7
98	Protein Surface-Assisted Enhancement in the Binding Affinity of an Inhibitor for Recombinant Human Carbonic Anhydrase-II. Journal of the American Chemical Society, 2004, 126, 10875-10883.	6.6	59
99	An Investigation on the Analytical Potential of Polymerized Liposomes Bound to Lanthanide Ions for Protein Analysis. Journal of the American Chemical Society, 2004, 126, 10738-10745.	6.6	33
100	Two-Prong Inhibitors for Human Carbonic Anhydrase II. Journal of the American Chemical Society, 2004, 126, 13206-13207.	6.6	38
101	Purification of recombinant human carbonic anhydrase-II by metal affinity chromatography without incorporating histidine tags. Protein Expression and Purification, 2004, 37, 450-454.	0.6	16
102	Synthesis of Metal-Chelating Lipids to Sensitize Lanthanide Ions. Journal of Organic Chemistry, 2003, 68, 3999-4007.	1.7	27
103	Synthesis of New, Pyrene-Containing, Metal-Chelating Lipids and Sensing of Cupric Ions. Organic Letters, 2003, 5, 11-14.	2.4	61
104	Conjugation of poor inhibitors with surface binding groups: a strategy to improve inhibitionElectronic supplementary information (ESI) available: experimental details and UV-Vis titration data. See http://www.rsc.org/suppdata/cc/b3/b305179j/. Chemical Communications, 2003, , 2328.	2.2	8
105	Thermodynamic Studies on the Recognition of Flexible Peptides by Transition-Metal Complexes. Inorganic Chemistry, 2002, 41, 1584-1590.	1.9	15
106	An artificial receptor for a tri(histidine) ligand. , 2002, , 257-258.		0
107	Synthesis of Conjugated Diacetylene, Metal-Chelating Monomers for Polymerizable Monolayer Assemblies. Organic Letters, 2001, 3, 1877-1879.	2.4	6
108	Surface Recognition of a Protein Using Designed Transition Metal Complexes. Journal of the American Chemical Society, 2001, 123, 6283-6290.	6.6	95

SANKU MALLIK

#	Article	IF	CITATIONS
109	Selective recognition of carbonic anhydrase using transition metal complexes. Chemical Communications, 2000, , 547-548.	2.2	8
110	Synthesis and Fluorescence Properties of New Fluorescent, Polymerizable, Metal-Chelating Lipids. Journal of Organic Chemistry, 2000, 65, 3644-3651.	1.7	23
111	Polymerized Fluorescent Liposomes Incorporating Lanthanide Ions. Organic Letters, 2000, 2, 3067-3070.	2.4	13
112	Recognition of Flexible Peptides in Water by Transition Metal Complexes. Organic Letters, 2000, 2, 911-914.	2.4	23
113	Synthesis of New Polymerizable Metal-Chelating Lipids. Journal of Organic Chemistry, 1999, 64, 2969-2974.	1.7	18
114	Design and Synthesis of New Ligands for Positioning Two Metal lons. Synlett, 1996, 1996, 734-736.	1.0	8
115	Synthetic Bis-Metal Ion Receptors for Bis-Imidazole "Protein Analogs". Journal of the American Chemical Society, 1994, 116, 8902-8911.	6.6	58
116	Selective recognition of bis-imidazoles by complementary bis-metal ion complexes. Journal of the American Chemical Society, 1993, 115, 2518-2520.	6.6	26
117	Stereocontrolled functionalization of 1,5-cyclooctadiene using organomolybdenum chemistry. Journal of Organic Chemistry, 1992, 57, 2910-2917.	1.7	22
118	Stereocontrol during the alkylation of enolates attached to .piallyl-Mo(CO)2Cp systems. Journal of the American Chemical Society, 1990, 112, 8034-8042	6.6	46

18 the American Chemical Society, 1990, 112, 8034-8042.