
Fei Tuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9209451/publications.pdf Version: 2024-02-01

FEI TUO

#	Article	IF	CITATIONS
1	Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. Journal of Environmental Radioactivity, 2017, 180, 59-64.	1.7	22
2	ASSESSMENT OF NATURAL RADIOACTIVITY LEVELS AND RADIOLOGICAL HAZARDS IN BUILDING MATERIALS. Radiation Protection Dosimetry, 2020, 188, 316-321.	0.8	19
3	Measurement of 238U, 228Ra, 226Ra, 40K and 137Cs in foodstuffs samples collected from coastal areas of China. Applied Radiation and Isotopes, 2016, 111, 40-44.	1.5	10
4	Measurement of cosmic radiation dose to air crew connecting for a typical polar route flight. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 935-939.	1.5	8
5	Assessment of radioactivity level and associated radiation exposure in topsoil from eastern region of Shangrao Prefecture, China. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 297-302.	1.5	8
6	A review of nationwide radioactivity comparisons on gamma-ray spectrometry organized by the NIRP, China. Applied Radiation and Isotopes, 2014, 87, 435-438.	1.5	6
7	Intercomparison of γ-spectrometry analysis of radionuclides between China and Japan in 2012–2013. Applied Radiation and Isotopes, 2015, 105, 244-248.	1.5	5
8	Radionuclide content and risk analysis of edible mushrooms in northeast China. Radiation Medicine and Protection, 2021, 2, 165-170.	0.8	5
9	Determinations of 210Pb contents in food, diet, environmental samples and estimations of internal dose due to daily intakes. Journal of Environmental Radioactivity, 2019, 203, 107-111.	1.7	4
10	Evaluation of the natural radioactivity in food and soil around uranium mining region. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 127-133.	1.5	4
11	Level, distribution, variation and sources of Pb-210 in atmosphere in North China. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1855-1862.	1.5	3
12	Natural radionuclides distribution, depth profiles of caesium-137 and risk assessment for soil samples in west regions of China. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 831-838.	1.5	2
13	Measurement of Natural Radionuclides and Assessment of Radiation Hazard in Coal from Parts of China. Health Physics, 2021, 120, 552-558.	O.5	2
14	Standardization of krypton-85 and its calibration on HPGe gamma-ray spectrometer. Applied Radiation and Isotopes, 2020, 166, 109342.	1.5	1
15	Experience and performance of In Vivo Monitoring Laboratory of NIRP in 2017 thyroid measurement intercomparison. Applied Radiation and Isotopes, 2021, 168, 109492.	1.5	1