
Lei Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9209106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20, 41.	7.9	445
2	Nanoparticle cancer vaccines: Design considerations and recent advances. Asian Journal of Pharmaceutical Sciences, 2020, 15, 576-590.	4.3	58
3	Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science Translational Medicine, 2020, 12, .	5.8	117
4	Using a Physiologically Based Pharmacokinetic Absorption Model to Establish Dissolution Bioequivalence Safe Space for Oseltamivir in Adult and Pediatric Populations. AAPS Journal, 2020, 22, 107.	2.2	24
5	Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Communications Biology, 2020, 3, 205.	2.0	57
6	Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nature Communications, 2020, 11, 2424.	5.8	167
7	Remodeling the fibrotic tumor microenvironment of desmoplastic melanoma to facilitate vaccine immunotherapy. Nanoscale, 2020, 12, 3400-3410.	2.8	24
8	Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy, 2019, 27, 710-728.	3.7	685
9	Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnology, 2019, 37, 1174-1185.	9.4	398
10	Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Molecular Therapy, 2018, 26, 45-55.	3.7	240
11	mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Molecular Therapy, 2018, 26, 420-434.	3.7	132
12	A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight, 2018, 3, .	2.3	175
13	Dual Functional LipoMET Mediates Envelope-type Nanoparticles to Combinational Oncogene Silencing and Tumor Growth Inhibition. Molecular Therapy, 2017, 25, 1567-1579.	3.7	28
14	Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS Nano, 2017, 11, 4916-4925.	7.3	218
15	Nanoformulations for combination or cascade anticancer therapy. Advanced Drug Delivery Reviews, 2017, 115, 3-22.	6.6	145
16	Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. ACS Nano, 2017, 11, 8690-8706.	7.3	108
17	Targeting Tumor-Associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Research, 2017, 77, 719-731.	0.4	169
18	Abstract 1173: A novel selective Mcl-1 inhibitor exhibitsin vitroandin vivoefficacy in melanoma. , 2017, , .		0

Lei Miao

#	Article	IF	CITATIONS
19	Cancer Therapy: Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy (Adv. Mater. 48/2016). Advanced Materials, 2016, 28, 10578-10578.	11.1	2
20	Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. Journal of Controlled Release, 2016, 228, 107-119.	4.8	45
21	Pieter Cullis: an outstanding lipid biophysicist, drug delivery scientist, educator, and entrepreneur. Journal of Drug Targeting, 2016, 24, 762-764.	2.1	1
22	The Binding Site Barrier Elicited by Tumor-Associated Fibroblasts Interferes Disposition of Nanoparticles in Stroma-Vessel Type Tumors. ACS Nano, 2016, 10, 9243-9258.	7.3	161
23	Facile Fabrication of Tumor Redox‣ensitive Nanoassemblies of Smallâ€Molecule Oleate Prodrug as Potent Chemotherapeutic Nanomedicine. Small, 2016, 12, 6353-6362.	5.2	147
24	Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy. Nano Letters, 2016, 16, 5401-5408.	4.5	346
25	Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. Journal of Controlled Release, 2016, 244, 63-73.	4.8	74
26	Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy. Advanced Materials, 2016, 28, 10613-10622.	11.1	189
27	PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nature Communications, 2016, 7, 11822.	5.8	133
28	Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: A combination nanomedicine approach. Cancer Letters, 2016, 379, 32-38.	3.2	41
29	A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA. Biomaterials, 2016, 102, 239-248.	5.7	59
30	Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Molecular Therapy, 2016, 24, 364-374.	3.7	86
31	Delivery of oligonucleotides with lipid nanoparticles. Advanced Drug Delivery Reviews, 2015, 87, 68-80.	6.6	158
32	Exploring the Tumor Microenvironment with Nanoparticles. Cancer Treatment and Research, 2015, 166, 193-226.	0.2	97
33	A Low Protein Binding Cationic Poly(2â€oxazoline) as Nonâ€Viral Vector. Macromolecular Bioscience, 2015, 15, 1004-1020.	2.1	37
34	Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. Journal of Controlled Release, 2015, 219, 192-204.	4.8	192
35	Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Journal of Controlled Release, 2015, 217, 27-41.	4.8	101
36	Nanoparticles with Precise Ratiometric Co‣oading and Coâ€Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced Functional Materials, 2014, 24, 6601-6611.	7.8	154

Lei Miao

#	Article	IF	CITATIONS
37	Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. Journal of Controlled Release, 2014, 182, 90-96.	4.8	105
38	Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. Journal of Controlled Release, 2014, 174, 137-142.	4.8	71
39	Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation. ACS Nano, 2014, 8, 4996-5009.	7.3	163
40	Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014, 35, 7647-7653.	5.7	22
41	Lipid-Coated Cisplatin Nanoparticles Induce Neighboring Effect and Exhibit Enhanced Anticancer Efficacy. ACS Nano, 2013, 7, 9896-9904.	7.3	125