Reed Teyber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic heat pumps: An overview of design principles and challenges. Science and Technology for the Built Environment, 2016, 22, 507-519.	1.7	54
2	Impacts of configuration losses on active magnetic regenerator device performance. Applied Thermal Engineering, 2016, 106, 601-612.	6.0	36
3	Performance evaluation of two-layer active magnetic regenerators with second-order magnetocaloric materials. Applied Thermal Engineering, 2016, 106, 405-414.	6.0	33
4	Permanent magnet design for magnetic heat pumps using total cost minimization. Journal of Magnetism and Magnetic Materials, 2017, 442, 87-96.	2.3	33
5	Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms. International Journal of Refrigeration, 2017, 74, 38-46.	3.4	31
6	Experimental investigation of MnFeP _{1â^'<i>x</i>} As _{<i>x</i>} multilayer active magnetic regenerators. Journal Physics D: Applied Physics, 2017, 50, 315001.	2.8	30
7	Development and performance of a 2.9 Tesla dipole magnet using high-temperature superconducting CORC [®] wires. Superconductor Science and Technology, 2021, 34, 015012.	3.5	29
8	Performance investigation of a high-field active magnetic regenerator. Applied Energy, 2019, 236, 426-436.	10.1	28
9	Material screening metrics and optimal performance of an active magnetic regenerator. Journal of Applied Physics, 2017, 121, .	2.5	26
10	Semi-analytic AMR element model. Applied Thermal Engineering, 2018, 128, 1022-1029.	6.0	23
11	Quench detection using Hall sensors in high-temperature superconducting CORC [®] -based cable-in-conduit-conductors for fusion applications. Superconductor Science and Technology, 2020, 33, 105011.	3.5	22
12	Investigation of bypass fluid flow in an active magnetic regenerative liquefier. Cryogenics, 2018, 93, 34-40.	1.7	16
13	A concise approach for building the \$s-T\$ diagram for Mn–Fe–P–Si hysteretic magnetocaloric material. Journal Physics D: Applied Physics, 2017, 50, 365001.	2.8	14
14	Experimental study of 2-layer regenerators using Mn–Fe–Si–P materials. Journal Physics D: Applied Physics, 2018, 51, 105002.	2.8	14
15	Thermal-hydraulic evaluation of 3D printed microstructures. Applied Thermal Engineering, 2019, 160, 113990.	6.0	13
16	Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity. Journal of Applied Physics, 2018, 123, .	2.5	12
17	Status of the Nb\$_{3}\$Sn Canted-Cosine-Theta Dipole Magnet Program at Lawrence Berkeley National Laboratory. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-7.	1.7	12
18	Experimental characterization of multilayer active magnetic regenerators using first order materials: Multiple points of equilibrium. Journal of Applied Physics, 2018, 124, .	2.5	11

Reed Teyber

#	Article	IF	CITATIONS
19	CORC ^{\$^{circledR}\$} cable terminations with integrated Hall arrays for quench detection. Superconductor Science and Technology, 2020, 33, 095009.	3.5	10
20	Passive force balancing of an active magnetic regenerative liquefier. Journal of Magnetism and Magnetic Materials, 2018, 451, 79-86.	2.3	9
21	Multiple points of equilibrium for active magnetic regenerators using first order magnetocaloric material. Journal of Applied Physics, 2018, 123, .	2.5	7
22	Incorporating device and experimental loss mechanisms in AMR modelling. International Journal of Refrigeration, 2019, 98, 323-333.	3.4	7
23	Predicting the thermal hysteresis behavior for a single-layer MnFeP1â^'xSix active magnetic regenerator. Applied Thermal Engineering, 2021, 183, 116173.	6.0	6
24	Thermoeconomic cost optimization of superconducting magnets for proton therapy gantries. Superconductor Science and Technology, 2020, 33, 105005.	3.5	4
25	Superconducting magnet design for magnetic liquefiers using total cost minimization. Cryogenics, 2019, 99, 114-122.	1.7	3
26	Inverse Biot–Savart Optimization for Superconducting Accelerator Magnets. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	3
27	Fixed field phase shifters for a multipass recirculating superconducting proton linac. Physical Review Accelerators and Beams, 2021, 24, .	1.6	1
28	Mechanical and Thermal Analysis of an HTS Superconducting Magnet for an Achromatic Gantry for Proton Therapy. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
29	Combined Function Magnetic Measurement System. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	0