Félix Tomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9208276/publications.pdf

Version: 2024-02-01

147801 182427 3,711 184 31 51 citations h-index g-index papers 186 186 186 3582 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of the Rootstock and the Ploidy Level of the Scion and the Rootstock on Sweet Orange (Citrus sinensis) Peel Essential Oil Yield, Composition and Aromatic Properties. Agriculture (Switzerland), 2022, 12, 214.	3.1	6
2	Chemical composition of essential oils isolated from leaves, twigs, roots and cones of Vietnamese <i>Keteleeria evelyniana</i> Mast. Journal of Essential Oil Research, 2022, 34, 148-154.	2.7	2
3	Phylogenetic and taxonomic status of Citrus halimii B.C. Stone determined by genotyping complemented by chemical analysis of leaf and fruit rind essential oils. Scientia Horticulturae, 2022, 299, 111018.	3.6	2
4	Neuropeltis acuminata (P. Beauv.): Investigation of the Chemical Variability and In Vitro Anti-inflammatory Activity of the Leaf Essential Oil from the Ivorian Species. Molecules, 2022, 27, 3759.	3.8	4
5	Leaf essential oil from Ivorian Isolona dewevrei (Annonaceae): Chemical composition and structure elucidation of four new natural sesquiterpenes. Flavour and Fragrance Journal, 2021, 36, 22-33.	2.6	6
6	Chemical composition of needle and twig essential oils from Pinus krempfii Lecomte, an endemic species to Vietnam. Journal of Essential Oil Research, 2021, 33, 63-68.	2.7	1
7	Chemical composition of root and stem bark essential oils from Ivorian Isolona dewevrei: structural elucidation of a new natural germacrone. Natural Product Research, 2021, , 1-7.	1.8	2
8	Essential oil composition of <i>Cladanthus eriolepis</i> (Coss. ex Maire) Oberpr. & Lamp; Vogt, an endemic species to Morocco. Journal of Essential Oil Research, 2021, 33, 369-375.	2.7	3
9	13C NMR Dereplication Using MixONat Software: A Practical Guide to Decipher Natural Products Mixtures. Planta Medica, 2021, 87, 1061-1068.	1.3	7
10	Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives. Plants, 2021, 10, 1117.	3. 5	8
11	Intercultivar Diversity of Sour Orange (Citrus aurantium L.) Based on Genetic Markers, Phenotypic Characteristics, Aromatic Compounds and Sensorial Analysis. Agronomy, 2021, 11, 1084.	3.0	9
12	Chemical Variability of Moroccan Myrtle Oil. Chemistry and Biodiversity, 2021, 18, e2100209.	2.1	4
13	Chemical Variability and In Vitro Anti-Inflammatory Activity of Leaf Essential Oil from Ivorian Isolona dewevrei (De Wild. & T. Durand) Engl. & Diels. Molecules, 2021, 26, 6228.	3.8	1
14	Intraspecific chemical variability of the essential oils of Moroccan endemic Origanum elongatum L. (Lamiaceae) from its whole natural habitats. Arabian Journal of Chemistry, 2020, 13, 3070-3081.	4.9	19
15	Two new eudesman-4α-ol epoxides from the stem essential oil of Laggera pterodonta from Côte d'lvoire. Natural Product Research, 2020, 34, 2765-2771.	1.8	8
16	Composition and Intraspecific Chemical Variability of Leaf Essential Oil of Laggera pterodonta from CÃ te d'Ivoire. Chemistry and Biodiversity, 2020, 17, e1900504.	2.1	8
17	Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy, 2020, 10, 1256.	3.0	10
18	New Natural Oxygenated Sesquiterpenes and Chemical Composition of Leaf Essential Oil from Ivoirian Isolona dewevrei (De Wild. & Durand) Engl. & Diels. Molecules, 2020, 25, 5613.	3.8	6

#	Article	IF	CITATIONS
19	Composition, Seasonal Variation, and Biological Activities of Lantana camara Essential Oils from Côte d'Ivoire. Molecules, 2020, 25, 2400.	3.8	19
20	Triploid Citrus Genotypes Have a Better Tolerance to Natural Chilling Conditions of Photosynthetic Capacities and Specific Leaf Volatile Organic Compounds. Frontiers in Plant Science, 2020, 11, 330.	3.6	34
21	Chemical Composition of Aerial Parts Essential Oils from Six Endemic Malagasy Helichrysum Species. Plants, 2020, 9, 265.	3.5	4
22	Composition, Chemical Variability and Biological Activity of Cymbopogon schoenanthus Essential Oil from Central Algeria. Chemistry and Biodiversity, 2020, 17, e2000138.	2.1	7
23	Characterization of a new epoxy-hydroxycarvotanacetone derivative from the leaf essential oil of <i>Laggera pterodonta</i> from CÃ′te d'lvoire. Natural Product Research, 2019, 33, 2109-2112.	1.8	14
24	Chemical Composition of Leaf Essential Oil of Piper umbellatum and Aerial Part Essential Oil of Piper guineense From CÃ'te d'Ivoire. Natural Product Communications, 2019, 14, 1934578X1985912.	0.5	5
25	Genetic, morphological and chemical investigations reveal the genetic origin of Pompia (C. medica) Tj ETQq1 1 ().784314 2.9	rgBT /Overloc 12
26	Snyderol derivatives from Laurencia obtusa collected in Corsica. Biochemical Systematics and Ecology, 2019, 82, 24-26.	1.3	2
27	Composition and Chemical Variability of <i>Myrtus communis</i> Leaf Oil From Northwestern Algeria. Natural Product Communications, 2019, 14, 1934578X1985003.	0.5	4
28	Chemical Composition of Needle, Cone, and Branch Oils From Vietnamese <i>Pinus cernua</i> Product Communications, 2019, 14, 1934578X1985099.	0.5	4
29	Essential oil of the malagasy grass Elionurus tristis Hack. contains several undescribed sesquiterpenoids. Phytochemistry, 2019, 162, 29-38.	2.9	10
30	Identification and Quantitative Determination of Resin Acids from Corsican <i>Pinus pinaster</i> <scp>Aiton</scp> Oleoresin Using ¹³ Câ€NMR Spectroscopy. Chemistry and Biodiversity, 2019, 16, e1800482.	2.1	8
31	Biological Activities and Chemical Composition of Santolina africana Jord. et Fourr. Aerial Part Essential Oil from Algeria: Occurrence of Polyacetylene Derivatives. Molecules, 2019, 24, 204.	3.8	9
32	Chemical composition of the essential oils from the aerial parts of two Malagasy endemic species (Apiaceae): Billburttia capensoides Sales & Hedge and Billburttia vaginoides Sales & Hedge. Natural Product Research, 2019, 33, 1200-1203.	1.8	0
33	Halogenated C ₁₅ Acetogenin Analogues of Obtusallene III from a <i>Laurenciella</i> sp. Collected in Corsica. Journal of Natural Products, 2018, 81, 279-285.	3.0	4
34	Chemical composition of leaf oil from Polyalthia longifolia (Sonnerat) Thwait. grown in Côte d'lvoire. Journal of Essential Oil Research, 2018, 30, 153-158.	2.7	3
35	Composition and Chemical Variability of Ivorian <i>Xylopia rubescens</i> Trunk Bark Oil. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	1
36	Composition and Chemical Variability of Root Bark oil from Ivoirian <i>Cleistopholis patens</i> Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	1

#	Article	IF	CITATIONS
37	Chemical Variability of the Essential Oil of <i>Pituranthos scoparius</i> from Algeria. Chemistry and Biodiversity, 2018, 15, e1800149.	2.1	11
38	Composition and Chemical Variability of <i>Enantia polycarpa </i> <scp>Engl</scp> . & amp; <scp>Diels</scp> Leaf Essential Oil from CÃte d'Ivoire. Chemistry and Biodiversity, 2018, 15, e1800061.	2.1	3
39	Anti-Quorum Sensing Activity of 12 Essential Oils on chromobacterium violaceum and Specific Action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules, 2018, 23, 2125.	3.8	41
40	New Metabolites Isolated from a Laurencia obtusa Population Collected in Corsica. Molecules, 2018, 23, 720.	3.8	7
41	Chemical composition of Ivorian Artabotrys insignis leaf oil. Combined analysis including 13C NMR, to quantify germacrene A and \hat{l}^2 -elemene. Natural Product Research, 2017, 31, 1836-1839.	1.8	3
42	Chemical compositions of essential oils of five introduced conifers in Corsica. Natural Product Research, 2017, 31, 1697-1703.	1.8	21
43	Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives. Applied Biochemistry and Biotechnology, 2017, 182, 1000-1013.	2.9	5
44	Chemical composition of the leaf oil of Artabotrys jollyanus from Côte d'lvoire. Revista Brasileira De Farmacognosia, 2017, 27, 414-418.	1.4	8
45	Analysis of genetic diversity and population structure of the endangered Origanum compactum from Morocco, using SSR markers: Implication for conservation. Biological Conservation, 2017, 212, 172-182.	4.1	29
46	Influence of Environmental Factors on Essential Oil Variability in <i>Origanum compactum </i> <scp>Benth</scp> . Growing Wild in Morocco. Chemistry and Biodiversity, 2017, 14, e1700158.	2.1	63
47	Chemical Variability of Ivoirian <i>Xylopia rubescens</i> Leaf Oil. Chemistry and Biodiversity, 2017, 14, e1600200.	2.1	1
48	Discrimination and Characterization of Two Mediterranean Species from the <i>Laurencia</i> Complex (Rhodomelacea) Using an <scp>NMR</scp> â€Based Metabolomic Approach. Chemistry and Biodiversity, 2017, 14, e1700226.	2.1	3
49	Chemical composition of leaf and bark essential oils of <i>Vepris unifoliolata < /i>from Madagascar. Journal of Essential Oil Research, 2017, 29, 214-220.</i>	2.7	8
50	Composition and Chemical Variability of $\langle i \rangle$ Cleistopholis patens $\langle i \rangle$ Trunk Bark Oil from CÃ te d'Ivoire. Chemistry and Biodiversity, 2017, 14, e1600313.	2.1	1
51	Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy. Magnetochemistry, 2017, 3, 34.	2.4	14
52	Chemical Composition of Laurencia obtusa Extract and Isolation of a New C15-Acetogenin. Molecules, 2017, 22, 779.	3.8	10
53	New Pinane Derivatives Found in Essential Oils of Calocedrus decurrens. Molecules, 2017, 22, 921.	3.8	5
54	Integrated Analysis by GC(RI), GC-MS and 13C NMR of Fortunella Japonica Leaf Volatiles Obtained by Hydrodistillation, Microwave- assisted Hydrodistillation and Hydrolate Extraction. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	0

#	Article	IF	Citations
55	Chemical Composition of the Fruit Oils of Five <i>Fortunella</i> Species Grown in the Same Pedoclimatic Conditions in Corsica (France). Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	7
56	Integrated Analysis of the Wood Oil from Xanthocyparis vietnamensis Farjon & Early Burney, Hiep. by Chromatographic and Spectroscopic Techniques. Molecules, 2016, 21, 840.	3.8	13
57	Chemical Composition and Antimicrobial Activity of the Essential Oil from Aerial Parts of Algerian Pulicaria Mauritanica. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
58	Composition and Chemical Variability of Ivoirian <i>Polyalthia oliveri</i> Leaf Oil. Chemistry and Biodiversity, 2016, 13, 293-298.	2.1	8
59	The Chemical Diversity of <i>Eucalyptus</i> spp. Essential Oils from Plants Grown in Brazil. Chemistry and Biodiversity, 2016, 13, 1656-1665.	2.1	12
60	The Genus <i>Myrtus</i> L. in Algeria: Composition and Biological Aspects of Essential Oils from <i>M. communis</i> and <i>M. nivellei</i> A Review. Chemistry and Biodiversity, 2016, 13, 672-680.	2.1	25
61	Chromatographic and spectral characteristic of some esters of a common monoterpene alcohols. Flavour and Fragrance Journal, 2016, 31, 290-292.	2.6	8
62	Chemical composition and antimicrobial activity of the essential oil from aerial parts of <i>Micromeria debilis</i> Pomel from Algeria. Journal of Essential Oil Research, 2016, 28, 383-390.	2.7	2
63	Chemical Polymorphism of <i>OriganumÂcompactum</i> Grown in All Natural Habitats in Morocco. Chemistry and Biodiversity, 2016, 13, 1126-1139.	2.1	36
64	Composition and Chemical Variability of the Needle Oil from <i>Pinus halepensis</i> growing in Corsica. Chemistry and Biodiversity, 2016, 13, 380-386.	2.1	11
65	Germacraâ€1(10),5â€dienâ€4αâ€ol in <i>Fortunella</i> sp. leaf oils. Flavour and Fragrance Journal, 2015, 30, 445-450.	2.6	6
66	Deodarone Isomers in <i>Cedrus atlantica</i> Essential Oils and Tar Oils. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	3
67	Composition and Chemical Variability of Ivoirian <i>Xylopia staudtii</i> Leaf Oil. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	4
68	Thymyl esters derivatives and a new natural product modhephanone from <i>Pulicaria mauritanica</i> Coss <i>.</i> (Asteraceae) root oil. Flavour and Fragrance Journal, 2015, 30, 83-90.	2.6	15
69	Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 2015, 75, 166-172.	3.6	53
70	Rapid Screening of Chemical Compositions of Gracilaria dura and Hypnea mucisformis (Rhodophyta) from Corsican Lagoon International Journal of Phytocosmetics and Natural Ingredients, 2015, 2, 8.	0.3	14
71	Composition and Chemical Variability of <i>Eucalyptus bosistoana </i> Sahara. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	7
72	Antimicrobial Activity of <i>Ammodaucus leucotrichus</i> Fruit Oil from Algerian Sahara. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	9

#	Article	IF	Citations
73	Chemical Variability of <i>Xylopia quintasii</i> <scp>Engl.</scp> & amp; <scp>Diels</scp> Leaf Oil from CÃ'te d'Ivoire. Chemistry and Biodiversity, 2014, 11, 332-339.	2.1	8
74	Combined Analysis by Chromatographic and Spectroscopic Techniques: Composition of the Essential Oil from "Andriambolamenaâ€, A Wild Aromatic Plant from Madagascar. Analytical Chemistry Letters, 2014, 4, 57-64.	1.0	0
75	The key role of ¹³ C NMR analysis in the identification of individual components of <i>Polyalthia longifolia</i> leaf oil. Flavour and Fragrance Journal, 2014, 29, 371-379.	2.6	40
76	Composition and antimicrobial activity of the essential oil from AlgerianWarionia saharaeBenth. & Hook Journal of Essential Oil Research, 2014, 26, 385-391.	2.7	4
77	Chemical Composition of the essential oils from Vietnamese Clausena indica and C. anisum-olens. Natural Product Communications, 2014, 9, 1531-4.	0.5	2
78	Composition and chemical variability of Corsican Pinus halepensis cone oil. Natural Product Communications, 2014, 9, 1361-4.	0.5	6
79	New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. & Samp; Trab., an endemic species of Central Sahara. Journal of Ethnopharmacology, 2013, 149, 613-620.	4.1	26
80	Combined analysis of <i>Xylopia rubescens</i> Oliv. leaf oil using gas chromatography with flame ionization detection, gas chromatography with mass spectrometry and ¹³ C nuclear magnetic resonance: structure elucidation of new compounds. Flavour and Fragrance Journal, 2013, 28, 373-379.	2.6	9
81	Chemical Variability of Algerian <i>Myrtus communis</i> i> L Chemistry and Biodiversity, 2013, 10, 129-137.	2.1	26
82	Analysis of the volatile fraction of <i>Teucrium marum</i> L Flavour and Fragrance Journal, 2013, 28, 14-24.	2.6	16
83	Chemical Variability of Cleistopholis patens (Benth.) Engl. et Diels Leaf Oil from Ivory Coast. Chemistry and Biodiversity, 2013, 10, 2053-2060.	2.1	4
84	Quantification of taxanes in a leaf and twig extract from <i>Taxus baccata</i> L. using ¹³ C NMR spectroscopy. Magnetic Resonance in Chemistry, 2013, 51, 756-761.	1.9	6
85	Analysis of <i>Cleistopholis patens</i> Leaf and Trunk Bark Oils Using Combined GC―Flame Ionisation Detection, GCâ€Retention Index, GC–MS and ¹³ Câ€NMR. Phytochemical Analysis, 2013, 24, 574-580.	2.4	23
86	Chemical composition of leaf and stem oils from VietnameseCupressus tonkinensisSilba. Journal of Essential Oil Research, 2013, 25, 11-16.	2.7	5
87	Combined Analysis of the Root Bark Oil of <i>Cleistopholis glauca</i> by Chromatographic and Spectroscopic Techniques. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	2
88	Leaf oil from Vepris madagascarica (Rutaceae), source of (E)-anethole. Natural Product Communications, 2013, 8, 1165-6.	0.5	4
89	Chemical composition of the leaf oil ofCleistopholis glaucaPierre ex Engler & Diels from Côte d'lvoire. Journal of Essential Oil Research, 2012, 24, 471-474.	2.7	4
90	Chemical Variability of the Essential Oil of <i>Juniperus phoenicea</i> var. <i>turbinata</i> from Algeria. Chemistry and Biodiversity, 2012, 9, 2742-2753.	2.1	9

#	Article	IF	CITATIONS
91	Chemical Variability of the Leaf Essential Oil of <i>Xylopia aethiopica</i> (<scp>Dunal</scp>) A. <scp>Rich</scp> . from CÃte d'Ivoire. Chemistry and Biodiversity, 2012, 9, 2802-2809.	2.1	7
92	Composition of leaf and stem bark oils of Xylopia villosa Chipp. Journal of Essential Oil Research, 2012, 24, 253-257.	2.7	7
93	Three New Natural Compounds from the Root Bark Essential Oil from <i>Xylopia aethiopic</i> Analysis, 2012, 23, 651-656.	2.4	14
94	Occurrence of C8–C10 esters in Mediterranean <i>Myrtus communis</i> L. leaf essential oil. Flavour and Fragrance Journal, 2012, 27, 335-340.	2.6	22
95	(â^')-5,6-Dehydrocamphor from the antifungal essential oil of Zuccagnia punctata. Phytochemistry Letters, 2012, 5, 194-199.	1.2	17
96	<i>Artabotrys oliganthus</i> Engl. & Diels from Ivory Coast: Composition of Leaf, Stem Bark and Fruit Oils. Journal of Essential Oil-bearing Plants: JEOP, 2011, 14, 95-100.	1.9	7
97	Identification of putative residues involved in the accessibility of the substrate-binding site of lipoxygenase by site-directed mutagenesis studies. Archives of Biochemistry and Biophysics, 2011, 509, 82-89.	3.0	14
98	Composition and Antimicrobial Activity of the Essential Oil of Achillea odoratal. subsp. pectinata (Lamk) var.microphylla(Willd.) Willk. from Northwestern Algeria. Journal of Essential Oil Research, 2011, 23, 42-46.	2.7	7
99	Chemical Composition of the Essential Oil from Corsican <i>Mentha aquatica -</i> Combined Analysis by GC(RI), GC-MS and ¹³ C NMR Spectroscopy. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
100	Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. LaÃnz) M. LaÃnz, signalised by the antifungal activity. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 619-622.	2.8	27
101	Composition and antifungal activity of the essential oil from the rhizome and roots of Ferula hermonis. Phytochemistry, 2011, 72, 1406-1413.	2.9	55
102	Direct Identification of Two Major Components of an Essential Oil Using "Extraction NMR― Analytical Chemistry Letters, 2011, 1, 115-122.	1.0	7
103	Combined Analysis by GC(RI), GC-MS and 13C NMR of the Essential Oil from Tana bojeriana (Apiaceae), an Endemic Species of Madagascar. Analytical Chemistry Letters, 2011, 1, 130-134.	1.0	1
104	Chemical composition of the essential oil from Corsican Mentha aquatica-combined analysis by GC(RI), GC-MS and 13C NMR spectroscopy. Natural Product Communications, 2011, 6, 1479-82.	0.5	5
105	Composition and Chemical Variability of <i>Mentha suaveolens</i> ssp. <i>suaveolens</i> ssp. <i>insularis</i> from Corsica. Chemistry and Biodiversity, 2010, 7, 1002-1008.	2.1	28
106	Composition and Intraspecific Chemical Variability of the Essential Oil from <i>Artemisia herbaâ€alba</i> Growing Wild in a Tunisian Arid Zone. Chemistry and Biodiversity, 2010, 7, 2709-2717.	2.1	27
107	Enantiomeric differentiation of atropine/hyoscyamine by ¹³ C NMR spectroscopy and its application to <i>Datura stramonium</i> extract. Phytochemical Analysis, 2010, 21, 597-601.	2.4	13
108	Isothymol in Ajowan Essential Oil. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	11

#	Article	IF	Citations
109	Enantiomeric Differentiation of Oxygenated Bicyclo[2.2.1]heptane Derivatives by ^{13 < /sup>C NMR Spectroscopy Using Yb(hfc) _{3 < /sub>. Spectroscopy Letters, 2010, 43, 36-43.}}	1.0	5
110	Volatile Components from <i>Cymbopogon giganteus</i> (Hochst) Chiov var. <i>madagascariensis</i> (A.) Tj ETÇ)q0,00 rgl	BT /Overlock 1
111	Chemical Variability ofArtemisia herba-albaAsso Growing Wild in Semi-arid and Arid Land (Tunisia). Journal of Essential Oil Research, 2010, 22, 331-335.	2.7	15
112	Composition and chemical variability of leaf oil of Myrtus communis from north-eastern Algeria. Natural Product Communications, 2010, 5, 1659-62.	0.5	16
113	The Essential Oil FromArtemisia herba-albaAsso Cultivated in Arid Land (South Tunisia). Journal of Essential Oil Research, 2009, 21, 453-456.	2.7	7
114	IMPACT OF SEASON AND HARVEST FREQUENCY ON BIOMASS AND ESSENTIAL OIL YIELDS OF ARTEMISIA HERBA-ALBA CULTIVATED IN SOUTHERN TUNISIA. Experimental Agriculture, 2009, 45, 499-508.	0.9	2
115	The Essential Oil of <i>Bupleurum fruticosum</i> L. from Corsica: A Comprehensive Study. Chemistry and Biodiversity, 2009, 6, 2244-2254.	2.1	16
116	Inheritance of Characters Involved in Fruit Quality in a Citrus Interspecific Allotetraploid Somatic Hybrid. Journal of Agricultural and Food Chemistry, 2009, 57, 5065-5070.	5.2	16
117	Enantiomeric differentiation of oxygenated <i>p</i> â€menthane derivatives by ¹³ C NMR using Yb(hfc) ₃ . Magnetic Resonance in Chemistry, 2008, 46, 1188-1194.	1.9	19
118	Chemical composition and antibacterial activity of the essential oil from <i>Mentha suaveolens</i> ssp. <i>insularis</i> (Req.) Greuter. Flavour and Fragrance Journal, 2008, 23, 107-114.	2.6	32
119	Chemical variability of the leaf oil of 113 hybrids from <i>Citrus clementina</i> (Commun)Â×Â <i>Citrus deliciosa</i> (Willow Leaf). Flavour and Fragrance Journal, 2008, 23, 152-163.	2.6	27
120	Chemical Composition and Antibacterial Activity of the Essential Oil of Thymus ciliatus (Desf.) Benth. ssp.eu-ciliatus Maire from Algeria. Journal of Essential Oil Research, 2007, 19, 490-493.	2.7	21
121	Composition and Antibacterial Activity of the Essential Oil of <i>Ziziphora hispanica </i> (L.) from Algeria. Journal of Essential Oil-bearing Plants: JEOP, 2007, 10, 318-323.	1.9	14
122	Composition and Antibacterial Activity of the Essential Oil of <i>Thymus fontanesii </i> Boiss. et Reut. from Algeria Journal of Essential Oil Research, 2007, 19, 594-596.	2.7	15
123	Combined Analysis of the Essential Oil fromTagetes bipinataby GC, GC/MS and 13C-NMR Spectroscopy. Journal of Essential Oil Research, 2007, 19, 330-332.	2.7	5
124	Composition and antimicrobial activity of the essential oil of Clinopodium ascendens (Jordan) Sampaio from Madeira. Flavour and Fragrance Journal, 2007, 22, 139-144.	2.6	22
125	Kallisteine A and B, two new coumarins from the roots ofPeucedanum paniculatum L, a species endemic to Corsica. Magnetic Resonance in Chemistry, 2007, 45, 355-358.	1.9	7
126	Composition, irregular terpenoids, chemical variability and antibacterial activity of the essential oil from Santolina corsica Jordan et Fourr. Phytochemistry, 2007, 68, 1698-1705.	2.9	29

#	Article	IF	Citations
127	Combined analysis ofÂCymbopogonÂgiganteus Chiov. leaf oil from Ivory Coast byÂGC/RI, GC/MS andÂ13C-NMR. Comptes Rendus Chimie, 2006, 9, 164-168.	0.5	14
128	Chemical variability of the essential oil ofHelichrysum faradifani Sc. Ell. from Madagascar. Flavour and Fragrance Journal, 2006, 21, 111-114.	2.6	13
129	Composition of the essential oil from leaves and twigs ofLuma chequen. Flavour and Fragrance Journal, 2006, 21, 241-243.	2.6	3
130	Chemical variability of peel and leaf oils of mandarins. Flavour and Fragrance Journal, 2006, 21, 359-367.	2.6	49
131	\hat{l}^2 -Cyclolavandulyl and \hat{l}^2 -isocyclolavandulyl esters from Peucedanum paniculatum L., an endemic species to Corsica. Phytochemistry, 2005, 66, 1956-1962.	2.9	18
132	Terpenes and acetylene derivatives from the roots of Santolina corsica (Asteraceae). Biochemical Systematics and Ecology, 2005, 33, 445-449.	1.3	12
133	Unusual composition of the essential oils from the leaves ofPiper aduncum. Flavour and Fragrance Journal, 2005, 20, 67-69.	2.6	23
134	Composition and chemical variability of Ferula communis essential oil from Corsica. Flavour and Fragrance Journal, 2005, 20, 180-185.	2.6	21
135	Composition of the essential oil of cultivatedSalvia guaranitica from Uruguay. Flavour and Fragrance Journal, 2005, 20, 421-424.	2.6	4
136	Chemical composition of essential oil ofTeucrium polium subsp.capitatum (L.) from Corsica. Flavour and Fragrance Journal, 2005, 20, 436-441.	2.6	64
137	Citrus somatic allotetraploid hybrids exhibit a differential reduction of leaf sesquiterpenoid biosynthesis compared with their parents. Flavour and Fragrance Journal, 2005, 20, 626-632.	2.6	9
138	Two new irregular acyclic sesquiterpenes aldehydes from Santolina corsica essential oil. Magnetic Resonance in Chemistry, 2005, 43, 73-74.	1.9	11
139	Isolation and structure elucidation of ishwarol B. Magnetic Resonance in Chemistry, 2005, 43, 492-493.	1.9	3
140	Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil of Laurus novocanariensis by 13C-NMR spectroscopy. Phytochemical Analysis, 2005, 16, 104-107.	2.4	28
141	Essential Oil Composition and Antimicrobial Activity of <i>Ageratum conyzoides </i> From S. Tomé and PrÃncipe. Journal of Essential Oil Research, 2005, 17, 239-242.	2.7	10
142	Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 2005, 53, 2224-2230.	5.2	33
143	Advances in the Chemical Composition of <i>Lavandula dentata < /i>L. Essential Oil from Algeria. Journal of Essential Oil Research, 2005, 17, 292-295.</i>	2.7	15
144	Dihydroagarofurans: the fourth isomer isolated from Cedrelopsis grevel bark oil. Magnetic Resonance in Chemistry, 2004, 42, 709-711.	1.9	12

#	Article	IF	Citations
145	Eudesm-5-en-11-ol fromHelichrysum italicum essential oil. Magnetic Resonance in Chemistry, 2004, 42, 983-984.	1.9	11
146	Constituents of the essential oils fromPiper friedrichsthaliiC.DC. andP. pseudolindeniiC.DC. from Central America. Flavour and Fragrance Journal, 2003, 18, 198-201.	2.6	10
147	Composition and chemical variability of the bark oil ofCedrelopsis grevei H. Baillon from Madagascar. Flavour and Fragrance Journal, 2003, 18, 532-538.	2.6	46
148	Enantiomeric differentiation of bornyl acetate by 13C-NMR using a chiral lanthanide shift reagent. Phytochemical Analysis, 2003, 14, 241-244.	2.4	11
149	Essential Oil Composition of <i>Eryngium foetidum</i> from S. Tomé e PrÃncipe. Journal of Essential Oil Research, 2003, 15, 93-95.	2.7	48
150	Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosaTen.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 2003, 51, 6006-6013.	5.2	54
151	Chemical Composition of the Bark Oil ofCedrela odoratafrom S. Tomé and PrÃncipe. Journal of Essential Oil Research, 2003, 15, 422-424.	2.7	9
152	Composition and Antifungal Activity of the Essential Oil of Solidago chilensis. Planta Medica, 2002, 68, 164-167.	1.3	44
153	Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour and Fragrance Journal, 2002, 17, 15-19.	2.6	262
154	Volatile Components of Peel and Leaf Oils of Lemon and Lime Species. Journal of Agricultural and Food Chemistry, 2002, 50, 796-805.	5.2	214
155	Chemical composition of the essential oil from the leaves of Piper fulvescens, a plant traditionally used in Paraguay. Journal of Ethnopharmacology, 2001, 76, 105-107.	4.1	22
156	Enantiomeric differentiation of terpenic olefins by carbon-13 NMR using chiral binuclear shift reagents. Magnetic Resonance in Chemistry, 2001, 39, 621-624.	1.9	13
157	Chemical variability of peel and leaf essential oils of sour orange. Flavour and Fragrance Journal, 2001, 16, 89-96.	2.6	52
158	Identification and quantitative determination of furanodiene, a heat-sensitive compound, in essential oil by13C-NMR. Phytochemical Analysis, 2001, 12, 58-63.	2.4	55
159	Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochemical Systematics and Ecology, 2001, 29, 77-104.	1.3	124
160	Composition and chemical polymorphism of the essential oils from Piper lanceaefolium. Biochemical Systematics and Ecology, 2001, 29, 739-748.	1.3	31
161	Infraspecific variability of the essential oil ofCalamintha nepeta from Corsica (France). Flavour and Fragrance Journal, 2000, 15, 50-54.	2.6	31
162	Composition of the leaf oil ofFerula arrigonii Bocchieri. Flavour and Fragrance Journal, 2000, 15, 195-198.	2.6	26

#	Article	IF	Citations
163	Composition of the essential oils from leaves and fruits of threeHedyosmum species from Costa Rica. Flavour and Fragrance Journal, 2000, 15, 201-205.	2.6	13
164	Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco. Biochemical Systematics and Ecology, 2000, 28, 61-78.	1.3	116
165	Antimicrobial Activity and Chemical Composition of the Bark Oil ofCroton stellulifer, an Endemic Species from S. Tomé e PrÃncipe. Planta Medica, 2000, 66, 647-650.	1.3	48
166	Composition of the Essential Oils of Ocimum canum, O. gratissimum and O. minimum. Planta Medica, 1999, 65, 187-189.	1.3	102
167	Composition and Intraspecific Variability of the Leaf Oil of <i>Lippia multiflora </i> Nold. from the Ivory Coast. Journal of Essential Oil Research, 1999, 11, 153-158.	2.7	24
168	Chemical composition of peel and leaf essential oils of Citrus medica L. and C. limonimedica Lush Flavour and Fragrance Journal, 1999, 14, 161-166.	2.6	49
169	A daucane-type sesquiterpene fromDaucus carota seed oil. Flavour and Fragrance Journal, 1999, 14, 268-272.	2.6	49
170	Composition and infraspecific variability of essential oil from Thymus herba barona Lois. Biochemical Systematics and Ecology, 1998, 26, 915-932.	1.3	28
171	13C-NMR as a tool for identification and enantiomeric differentiation of major terpenes exemplified by the essential oil ofLavandula stoechas L. ssp.stoechas. Flavour and Fragrance Journal, 1998, 13, 154-158.	2.6	37
172	Leaf essential oils of three panamanian Piper species. Phytochemistry, 1998, 47, 1277-1282.	2.9	34
173	Chemical Composition of Myrtle Leaf Essential Oil from Corsica (France). Journal of Essential Oil Research, 1997, 9, 283-288.	2.7	87
174	Variability of essential oils of Thymus caespititius from portugal. Phytochemistry, 1997, 45, 307-311.	2.9	50
175	Composition and infraspecific variability of essential oil from Thymus camphoratus. Phytochemistry, 1997, 45, 1177-1183.	2.9	39
176	Essential Oils of <i>Calamintha nepeta</i> subsp. <i>nepeta</i> and subsp. <i>glandulosa</i> from Corsica (France). Journal of Essential Oil Research, 1996, 8, 363-366.	2.7	38
177	Identification of the Components of the Seed Oil ofXylopia aethiopicafrom Guinea Using13C-NMR Spectroscopy. Journal of Essential Oil Research, 1996, 8, 429-431.	2.7	10
178	Chemical polymorphism of the essential oil of Thymus carnosus from portugalâ~†. Phytochemistry, 1995, 38, 391-396.	2.9	63
179	Identification of Dihydrocarveol Stereoisomers and Their Acetates Using Carbon-13 NMR Spectroscopy. Spectroscopy Letters, 1994, 27, 921-933.	1.0	7
180	Carbon-13 Chemical Shift Assignment of 3,3-Dihalogenotricyclo [4.2.1.0 ^{2,4}]Nonane Derivatives by Two-Dimensional NMR Techniques. Spectroscopy Letters, 1994, 27, 379-386.	1.0	0

#	Article	IF	CITATIONS
181	Computer-aided carbon-13 NMR study of phenols contained in liquids produced by pyrolysis of biomass. Biomass and Bioenergy, 1994, 6, 461-464.	5.7	8
182	Activation of molecular oxygen by iron nitrosyls in the presence of bidentate nitrogen ligands (2,2′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine and 1,10-phenanthroline). Inorganica Chimica Acta, 1993, 2113-118.	20 5, 4	12
183	Carbon-13 Chemical Shift Assignment of \hat{l}^2 -Cedrene and Some Derivatives. Spectroscopy Letters, 1993, 26, 1661-1671.	1.0	5
184	The iron-nitrato/iron-nitrosyl couple in the presence of hexamethylphosphoric triamide and its relevance to oxygen activation and transfer. X-ray structure of Fe(NO3)(Cl)2(HMPA)2. Inorganic Chemistry, 1989, 28, 233-238.	4.0	34