Anant K Menon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920818/publications.pdf

Version: 2024-02-01

66234 82410 5,969 115 42 72 citations h-index g-index papers 132 132 132 5486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lipid landscapes and pipelines in membrane homeostasis. Nature, 2014, 510, 48-57.	13.7	697
2	Thematic review series: Lipid Posttranslational Modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. Journal of Lipid Research, 2007, 48, 993-1011.	2.0	347
3	A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. ELife, 2015, 4, .	2.8	227
4	Cytoplasmic and Nuclear Delivery of a TAT-derived Peptide and a \hat{I}^2 -Peptide after Endocytic Uptake into HeLa Cells. Journal of Biological Chemistry, 2003, 278, 50188-50194.	1.6	206
5	Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nature Communications, 2013, 4, 2367.	5.8	202
6	Transport of Newly Synthesized Sterol to the Sterol-Enriched Plasma Membrane Occurs via Nonvesicular Equilibrationâ€. Biochemistry, 2005, 44, 5816-5826.	1.2	199
7	Opsin Is a Phospholipid Flippase. Current Biology, 2011, 21, 149-153.	1.8	154
8	Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Progress in Lipid Research, 2016, 64, 69-84.	5.3	140
9	Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (Review). Molecular Membrane Biology, 2000, 17, 1-16.	2.0	136
10	Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS Biology, 2018, 16, e2003864.	2.6	132
11	Flipping Lipids: Why an' What's the Reason for?. ACS Chemical Biology, 2009, 4, 895-909.	1.6	127
12	Intracellular sterol transport and distribution. Current Opinion in Cell Biology, 2006, 18, 379-385.	2.6	120
13	Osh Proteins Regulate Membrane Sterol Organization but Are Not Required for Sterol Movement Between the ER and PM. Traffic, 2011, 12, 1341-1355.	1.3	113
14	Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nature Communications, 2014, 5, 5115.	5.8	112
15	Transbilayer lipid asymmetry. Current Biology, 2018, 28, R386-R391.	1.8	110
16	Effects of Conformational Stability and Geometry of Guanidinium Display on Cell Entry by Î ² -Peptides. Journal of the American Chemical Society, 2005, 127, 3686-3687.	6.6	101
17	Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Current Biology, 2000, 10, 241-252.	1.8	100
18	Distinct Flippases Translocate Glycerophospholipids and Oligosaccharide Diphosphate Dolichols across the Endoplasmic Reticulum. Biochemistry, 2008, 47, 7937-7946.	1.2	80

#	Article	IF	Citations
19	Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Molecular and Biochemical Parasitology, 1993, 58, 97-105.	0.5	76
20	The nhTMEM16 Scramblase Is Also a Nonselective Ion Channel. Biophysical Journal, 2016, 111, 1919-1924.	0.2	70
21	Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nature Communications, 2018, 9, 3251.	5.8	70
22	Does Rft1 flip an N-glycan lipid precursor?. Nature, 2008, 454, E3-E4.	13.7	69
23	Chemical Modification Identifies Two Populations of Glycerophospholipid Flippase in Rat Liver ER. Biochemistry, 2004, 43, 10710-10718.	1.2	67
24	A Detour for Yeast Oxysterol Binding Proteins. Journal of Biological Chemistry, 2012, 287, 11481-11488.	1.6	64
25	Transbilayer Movement of Fluorescent Phospholipids inBacillus megateriumMembrane Vesiclesâ€. Biochemistry, 1997, 36, 4969-4978.	1.2	62
26	A Cell-free Assay for Glycosylphosphatidylinositol Anchoring in African Trypanosomes. Journal of Biological Chemistry, 1999, 274, 16479-16486.	1.6	62
27	Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic, 2018, 19, 198-214.	1.3	62
28	Segregation of Glycosylphosphatidylinositol Biosynthetic Reactions in a Subcompartment of the Endoplasmic Reticulum. Journal of Biological Chemistry, 1999, 274, 15203-15212.	1.6	61
29	New fluorescent probes reveal that flippase-mediated flip-flop of phosphatidylinositol across the endoplasmic reticulum membrane does not depend on the stereochemistry of the lipid. Organic and Biomolecular Chemistry, 2005, 3, 1275.	1.5	58
30	Phosphatidylserine translocation at the yeast <i>trans</i> -Golgi network regulates protein sorting into exocytic vesicles. Molecular Biology of the Cell, 2015, 26, 4674-4685.	0.9	56
31	Speed Limits for Nonvesicular Intracellular Sterol Transport. Trends in Biochemical Sciences, 2017, 42, 90-97.	3.7	55
32	Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nature Communications, 2016, 7, 12832.	5.8	54
33	Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor Opsin. Structure, 2018, 26, 356-367.e3.	1.6	54
34	Flip-flop of glycosylphosphatidylinositols (GPI's) across the ER. Chemical Communications, 2005, , 453.	2.2	53
35	Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 767-772.	3.3	53
36	Transbilayer Movement of Fluorescent Phospholipid Analogues in the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 2002, 41, 5605-5612.	1.2	52

3

#	Article	IF	Citations
37	HeLa Cell Entry by Guanidinium-Rich β-Peptides: Importance of Specific Cation–Cell Surface Interactions. ChemBioChem, 2007, 8, 917-926.	1.3	51
38	Reconstitution and Partial Characterization of Phospholipid Flippase Activity from Detergent Extracts of the Bacillus subtilis Cell Membrane. Journal of Bacteriology, 2000, 182, 4198-4206.	1.0	49
39	Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7033-E7042.	3.3	49
40	Transbilayer Movement of Dipalmitoylphosphatidylcholine in Proteoliposomes Reconstituted from Detergent Extracts of Endoplasmic Reticulum. Journal of Biological Chemistry, 2002, 277, 25337-25343.	1.6	47
41	Identification and Purification of the Rat Liver Golgi Membrane UDP-N-acetylgalactosamine Transporter. Journal of Biological Chemistry, 1999, 274, 4474-4479.	1.6	46
42	Cell Surface Display and Intracellular Trafficking of Free Glycosylphosphatidylinositols in Mammalian Cells. Journal of Biological Chemistry, 2000, 275, 7378-7389.	1.6	46
43	Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11289-11294.	3.3	45
44	Regulation of surface coat exchange by differentiating African trypanosomes. Molecular and Biochemical Parasitology, 2006, 147, 211-223.	0.5	44
45	Nonpolarized Distribution of Glycosylphosphatidylinositols in the Plasma Membrane of Polarized Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 1995, 270, 24150-24155.	1.6	43
46	Structural Requirements for the Recruitment of Gaa1 into a Functional Glycosylphosphatidylinositol Transamidase Complex. Journal of Biological Chemistry, 2002, 277, 30535-30542.	1.6	43
47	De Novo Sphingolipid Synthesis Is Essential for Viability, but Not for Transport of Glycosylphosphatidylinositol-Anchored Proteins, in African Trypanosomes. Eukaryotic Cell, 2007, 6, 454-464.	3.4	42
48	Flip-Flop of Fluorescently Labeled Phospholipids in Proteoliposomes Reconstituted with <i>Saccharomyces cerevisiae</i> Microsomal Proteins. Eukaryotic Cell, 2007, 6, 1625-1634.	3.4	42
49	Structural basis of sterol binding and transport by a yeast StARkin domain. Journal of Biological Chemistry, 2018, 293, 5522-5531.	1.6	42
50	Phosphatidylinositol Hydrolysis by Glycosylphosphatidylinositol Phospholipase C. Journal of Biological Chemistry, 1996, 271, 15533-15541.	1.6	41
51	Photoaffinity labelling with P3-(4-azidoanilido)uridine 5′-triphosphate identifies Gpi3p as the UDP-GlcNAc-binding subunit of the enzyme that catalyses formation of GlcNAc-phosphatidylinositol, the first glycolipid intermediate in glycosylphosphatidylinositol synthesis. Biochemical Journal, 2000, 350, 815-822.	1.7	39
52	Phospholipid scrambling by rhodopsin. Photochemical and Photobiological Sciences, 2015, 14, 1922-1931.	1.6	39
53	Sterol gradients in cells. Current Opinion in Cell Biology, 2018, 53, 37-43.	2.6	36
54	Reconstitution of Glucosylceramide Flip-Flop across Endoplasmic Reticulum. Journal of Biological Chemistry, 2012, 287, 15523-15532.	1.6	35

#	Article	IF	Citations
55	Endoplasmic reticulum proteins involved in glycosylphosphatidylinositol-anchor attachment. FEBS Journal, 2001, 268, 2290-2300.	0.2	33
56	A Conserved Proline in the Last Transmembrane Segment of Gaa1 Is Required for Glycosylphosphatidylinositol (GPI) Recognition by GPI Transamidase. Journal of Biological Chemistry, 2004, 279, 6540-6545.	1.6	33
57	A Fluorescence-based Assay of Phospholipid Scramblase Activity. Journal of Visualized Experiments, 2016, , .	0.2	33
58	Soluble GPI8 restores glycosylphosphatidylinositol anchoring in a trypanosome cell-free system depleted of lumenal endoplasmic reticulum proteins. Biochemical Journal, 2000, 351, 717-722.	1.7	31
59	Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in <i>Saccharomyces cerevisiae</i> Lukaryotic Cell, 2009, 8, 161-169.	3.4	28
60	Glycoprotein Biosynthesis in a Eukaryote Lacking the Membrane Protein Rft1. Journal of Biological Chemistry, 2013, 288, 20616-20623.	1.6	28
61	TOR complex 2–regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain–containing proteins located at plasma membrane–endoplasmic reticulum contact sites. Molecular Biology of the Cell, 2018, 29, 2128-2136.	0.9	28
62	Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discovery, 2019, 5, 118.	2.0	28
63	Candida Drug Resistance Protein 1, a Major Multidrug ATP Binding Cassette Transporter of Candida albicans, Translocates Fluorescent Phospholipids in a Reconstituted System. Biochemistry, 2007, 46, 12081-12090.	1.2	27
64	Arv1 Regulates <scp>PM</scp> and <scp>ER</scp> Membrane Structure and Homeostasis But is Dispensable for Intracellular Sterol Transport. Traffic, 2013, 14, 912-921.	1.3	26
65	Lipid topogenesis — 35 years on. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 757-766.	1.2	26
66	Subcellular Localization and Targeting of N-Acetylglucosaminyl Phosphatidylinositol De-N-acetylase, the Second Enzyme in the Glycosylphosphatidylinositol Biosynthetic Pathway. Journal of Biological Chemistry, 2004, 279, 15743-15751.	1.6	24
67	Yeast oxysterol-binding proteins: sterol transporters or regulators of cell polarization?. Molecular and Cellular Biochemistry, 2009, 326, 9-13.	1.4	24
68	Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Scientific Reports, 2017, 7, 9522.	1.6	24
69	Phospholipid Scrambling by G Protein–Coupled Receptors. Annual Review of Biophysics, 2022, 51, 39-61.	4.5	24
70	Biosynthesis of the glycolipid membrane anchor of <i>Trypanosoma brucei</i> variant surface glycoproteins: involvement of Dol- <i>P</i> -Man. Biochemical Society Transactions, 1989, 17, 746-748.	1.6	22
71	[38] Biosynthesis of glycosylphosphatidylinositol anchors. Methods in Enzymology, 1995, 250, 513-535.	0.4	21
72	Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein–coupled receptor and TMEM16 scramblases. Journal of Biological Chemistry, 2018, 293, 18318-18327.	1.6	20

#	Article	IF	CITATIONS
73	Rethinking Opsins. Molecular Biology and Evolution, 2022, 39, .	3 . 5	20
74	Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. FEBS Journal, 2003, 270, 4507-4514.	0.2	19
75	Exchange of water for sterol underlies sterol egress from a StARkin domain. ELife, 2019, 8, .	2.8	18
76	Ethanolamine Phosphate Linked to the First Mannose Residue of Glycosylphosphatidylinositol (GPI) Lipids Is a Major Feature of the GPI Structure That Is Recognized by Human GPI Transamidase. Journal of Biological Chemistry, 2006, 281, 38358-38364.	1.6	17
77	RFT1 Protein Affects Glycosylphosphatidylinositol (GPI) Anchor Glycosylation. Journal of Biological Chemistry, 2017, 292, 1103-1111.	1.6	14
78	An engineered opsin monomer scrambles phospholipids. Scientific Reports, 2017, 7, 16741.	1.6	14
79	Complexity of the eukaryotic dolichol-linked oligosaccharide scramblase suggested by activity correlation profiling mass spectrometry. Scientific Reports, 2021, 11, 1411.	1.6	13
80	Glycolipid precursor of <i>Trypanosoma brucei</i> variant surface glycoproteins: incorporation of radiolabelled mannose and myristic acid in a cell-free system. Biochemical Society Transactions, 1988, 16, 996-997.	1.6	12
81	Photoaffinity labelling with P3-(4-azidoanilido)uridine 5′-triphosphate identifies Gpi3p as the UDP-GlcNAc-binding subunit of the enzyme that catalyses formation of GlcNAc-phosphatidylinositol, the first glycolipid intermediate in glycosylphosphatidylinositol synthesis. Biochemical Journal, 2000, 350, 815.	1.7	12
82	Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer. Journal of Biological Chemistry, 2018, 293, 12248-12258.	1.6	11
83	Reconstitution of Phospholipid Flippase Activity from E. coli Inner Membrane: A Test of the Protein Translocon as a Candidate Flippase. Biological Chemistry, 2002, 383, 1435-1440.	1.2	10
84	Disulfide Bond Formation and N-Glycosylation Modulate Protein-Protein Interactions in GPI-Transamidase (GPIT). Scientific Reports, 2017, 7, 45912.	1.6	10
85	Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115083119.	3.3	10
86	Endoplasmic Reticulum Localization of Gaa1 and PIG-T, Subunits of the Glycosylphosphatidylinositol Transamidase Complex. Journal of Biological Chemistry, 2005, 280, 16402-16409.	1.6	9
87	Reconstitution and Assay of Biogenic Membrane-Derived Phospholipid Flippase Activity in Proteoliposomes., 2003, 228, 271-280.		8
88	Introduction: lipid transport—an overview. Seminars in Cell and Developmental Biology, 2002, 13, 159-162.	2.3	7
89	Countercurrents in lipid flow. Nature, 2015, 525, 191-192.	13.7	7
90	Measurement of Intracellular Sterol Transport in Yeast. Methods in Molecular Biology, 2019, 1949, 115-136.	0.4	7

#	Article	IF	CITATIONS
91	Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Scientific Reports, 2021, 11, 10536.	1.6	7
92	Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5′-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins. Biochemical Journal, 1998, 333, 661-669.	1.7	6
93	Biosynthesis of Glycolipid Anchors in Trypanosoma brucei Trends in Glycoscience and Glycotechnology, 1991, 3, 107-115.	0.0	6
94	Soluble GPI8 restores glycosylphosphatidylinositol anchoring in a trypanosome cell-free system depleted of lumenal endoplasmic reticulum proteins. Biochemical Journal, 2000, 351, 717.	1.7	5
95	A Protein Pair with PIPs Inside. Structure, 2013, 21, 1070-1071.	1.6	5
96	Endoplasmic reticulum phospholipid scramblase activity revealed after protein reconstitution into giant unilamellar vesicles containing a photostable lipid reporter. Scientific Reports, 2021, 11, 14364.	1.6	5
97	Elimination of GPI2 suppresses glycosylphosphatidylinositol GlcNAc transferase activity and alters GPI glycan modification in Trypanosoma brucei. Journal of Biological Chemistry, 2021, 297, 100977.	1.6	5
98	Single Vesicle Fluorescence-Bleaching Assay for Multi-Parameter Analysis of Proteoliposomes by Total Internal Reflection Fluorescence Microscopy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29659-29667.	4.0	5
99	A Flip-Flop Switch in Polarity Signaling. Developmental Cell, 2007, 13, 607-608.	3.1	4
100	The cellular lipid landscape. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 755-756.	1.2	4
101	A PhotoClick cholesterolâ€based quantitative proteomics screen for cytoplasmic sterolâ€binding proteins in Saccharomyces cerevisiae. Yeast, 2020, 37, 15-25.	0.8	4
102	Chapter 2 Lipid modifications of proteins. New Comprehensive Biochemistry, 2002, , 37-54.	0.1	3
103	Intramembrane and Intermembrane Lipid Transport. , 2016, , 415-436.		3
104	Identification of TbPBN1 in <i>Trypanosoma brucei</i> reveals a conserved heterodimeric architecture for glycosylphosphatidylinositolâ€mannosyltransferaseâ€I. Molecular Microbiology, 2022, 117, 450-461.	1.2	3
105	Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure, 2022, 30, 1208-1217.e2.	1.6	3
106	Lipid modifications of proteins. , 2008, , 39-58.		2
107	Lipid gymnastics. Nature, 2015, 524, 420-422.	13.7	2
108	BIOSYNTHESIS OF GLYCOSYL-PHOSPHATIDYLINOSITOL. , 1992, , 155-169.		2

#	Article	IF	CITATIONS
109	Glycosylphosphatidylinositol (GPI) Anchors. , 2004, , 308-311.		1
110	Chapter 8 Split Topology of GPI Biosynthesis. The Enzymes, 2009, , 151-158.	0.7	1
111	Chapter 7 Attachment of a GPI Anchor to Protein. The Enzymes, 2009, 26, 133-149.	0.7	1
112	Nonenzymatic synthesis of anomerically pure, mannosyl-based molecular probes for scramblase identification studies. Beilstein Journal of Organic Chemistry, 2020, 16, 1732-1739.	1.3	1
113	flippant–An R package for the automated analysis of fluorescence-based scramblase assays. BMC Bioinformatics, 2017, 18, 146.	1.2	0
114	Biochemical reconstitution and resolution of lipid flippase activities required for protein glycosylation in the ER. FASEB Journal, 2012, 26, 349.2.	0.2	0
115	A novel assay to measure scrambling of natural phospholipids in reconstituted proteoliposomes. FASEB Journal, 2018, 32, 815.7.	0.2	0