Bruno Corbara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9207968/publications.pdf

Version: 2024-02-01

88 papers 2,093 citations

236833 25 h-index 276775 41 g-index

89 all docs

89 docs citations

89 times ranked

2778 citing authors

#	Article	IF	CITATIONS
1	Arthropod Diversity in a Tropical Forest. Science, 2012, 338, 1481-1484.	6.0	445
2	Arboreal ants build traps to capture prey. Nature, 2005, 434, 973-973.	13.7	108
3	Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLoS ONE, 2015, 10, e0144110.	1.1	102
4	Understorey environments influence functional diversity in tankâ€bromeliad ecosystems. Freshwater Biology, 2012, 57, 815-823.	1.2	64
5	Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia, 2006, 149, 301-311.	0.9	58
6	Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?. PLoS ONE, 2011, 6, e20129.	1.1	56
7	The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology, 2016, 9, 241-255.	1.2	47
8	Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems. PLoS ONE, 2013, 8, e71735.	1.1	42
9	Constraints on the functional trait space of aquatic invertebrates in bromeliads. Functional Ecology, 2018, 32, 2435-2447.	1.7	41
10	Ants mediate foliar structure and nitrogen acquisition in a tankâ€bromeliad. New Phytologist, 2009, 183, 1124-1133.	3.5	39
11	Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia, 2014, 723, 77-86.	1.0	38
12	A preliminary study of freshwater protozoa in tank bromeliads. Journal of Tropical Ecology, 2001, 17, 611-617.	0.5	37
13	Climate Change Impact on Neotropical Social Wasps. PLoS ONE, 2011, 6, e27004.	1.1	37
14	The effects of food web structure on ecosystem function exceeds those of precipitation. Journal of Animal Ecology, 2016, 85, 1147-1160.	1.3	36
15	Ant-plant mutualisms promote functional diversity in phytotelm communities. Functional Ecology, 2011, 25, 954-963.	1.7	34
16	Ants mediate the structure of phytotelm communities in an antâ€garden bromeliad. Ecology, 2010, 91, 1549-1556.	1.5	33
17	Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nature Communications, 2020, 11, 3215.	5.8	33
18	Ants as biological indicators of Wayana Amerindian land use in French Guiana. Comptes Rendus - Biologies, 2009, 332, 673-684.	0.1	32

#	Article	IF	Citations
19	Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshwater Biology, 2015, 60, 1917-1929.	1.2	32
20	Arboreal Ants Use the "Velcro® Principle―to Capture Very Large Prey. PLoS ONE, 2010, 5, e11331.	1.1	31
21	New insights on the genetic diversity of the honeybee parasite <i>Nosema ceranae</i> based on <i>multilocus</i> sequence analysis. Parasitology, 2013, 140, 1346-1356.	0.7	31
22	Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 2017, 62, 229-242.	1.2	31
23	Diversity and nest site selection of social wasps along Guianese forest edges: assessing the influence of arboreal ants. Comptes Rendus - Biologies, 2009, 332, 470-479.	0.1	29
24	Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species. PLoS ONE, 2010, 5, e9319.	1.1	29
25	Mutualistic ants contribute to tank-bromeliad nutrition. Annals of Botany, 2013, 112, 919-926.	1.4	29
26	The Ecology and Feeding Habits of the Arboreal Trap-Jawed Ant Daceton armigerum. PLoS ONE, 2012, 7, e37683.	1.1	24
27	Are myrmecophytes always better protected against herbivores than other plants?. Biological Journal of the Linnean Society, 2006, 89, 91-98.	0.7	23
28	Mise En Evidence D'Une Forme D'Apprentissage Dans Le Comportement De Capture Des Proies Chez Pachycondyla (=Neoponera) Villosa (Formicidae, Ponerinae). Behaviour, 1990, 115, 175-187.	0.4	22
29	Trophic mediation by a fungus in an ant–plant mutualism. Journal of Ecology, 2011, 99, 583-590.	1.9	22
30	How territoriality and host-tree taxa determine the structure of ant mosaics. Die Naturwissenschaften, 2015, 102, 33.	0.6	21
31	Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad. Annals of Botany, 2012, 109, 145-152.	1.4	20
32	Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales. Functional Ecology, 2018, 32, 2423-2434.	1.7	20
33	The ladybird Thalassa saginata , an obligatory myrmecophile of Dolichoderus bidens ant colonies. Die Naturwissenschaften, 2004, 91, 97-100.	0.6	19
34	A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest. PLoS ONE, 2014, 9, e114592.	1.1	19
35	Influence of its associated ant species on the life history of the myrmecophyte Cordia nodosa in French Guiana. Journal of Tropical Ecology, 2004, 20, 701-704.	0.5	18
36	Litter-dwelling ants as bioindicators to gauge the sustainability of small arboreal monocultures embedded in the Amazonian rainforest. Ecological Indicators, 2017, 82, 43-49.	2.6	18

#	Article	IF	Citations
37	Saproxylic beetles in tropical and temperate forests $\hat{a}\in$ A standardized comparison of vertical stratification patterns. Forest Ecology and Management, 2019, 444, 50-58.	1.4	18
38	An ant–plant mutualism induces shifts in the protist community structure of a tank-bromeliad. Basic and Applied Ecology, 2012, 13, 698-705.	1.2	17
39	Ecological response to altered rainfall differs across the Neotropics. Ecology, 2020, 101, e02984.	1.5	17
40	What drives detrital decomposition in neotropical tank bromeliads?. Hydrobiologia, 2017, 802, 85-95.	1.0	15
41	Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests. Ecological Entomology, 2019, 44, 560-570.	1.1	14
42	Nest relocation and high mortality rate in a Neotropical social wasp: Impact of an exceptionally rainy La Niña year. Comptes Rendus - Biologies, 2010, 333, 35-40.	0.1	13
43	Species niches, not traits, determine abundance and occupancy patterns: A multiâ€site synthesis. Global Ecology and Biogeography, 2020, 29, 295-308.	2.7	13
44	Les « jardins de fourmis , une association plantes-fourmis originale. L' Annee Biologique, 1999, 38, 73-89.	0.2	12
45	Baseline study of the leafâ€litter ant fauna in a French Guianese forest. Insect Conservation and Diversity, 2009, 2, 183-193.	1.4	12
46	The fire ant Solenopsis saevissima and habitat disturbance alter ant communities. Biological Conservation, 2015, 187, 145-153.	1.9	12
47	The dynamics of ant mosaics in tropical rainforests characterized using the Selfâ€Organizing Map algorithm. Insect Science, 2016, 23, 630-637.	1.5	12
48	Selection and capture of prey in the African ponerine antPlectroctena minor (Hymenoptera:) Tj ETQq0 0 0 rgBT	Overlock I	10 <u>Tf</u> 50 302 T
49	A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte. Die Naturwissenschaften, 2010, 97, 925-934.	0.6	10
50	Unexpectedly high bacteriochlorophyll <i>a</i> concentrations in neotropical tank bromeliads. Environmental Microbiology Reports, 2016, 8, 689-698.	1.0	10
51	Hollow Internodes Permit a Neotropical Understory Plant to Shelter Multiple Mutualistic Ant Species, Obtaining Protection and Nutrient Provisioning (Myrmecotrophy). American Naturalist, 2017, 190, E124-E131.	1.0	10
52	Tank bromeliads sustain high secondary production in neotropical forests. Aquatic Sciences, 2018, 80, 1.	0.6	10
53	Highly modular pattern in ant-plant interactions involving specialized and non-specialized myrmecophytes. Die Naturwissenschaften, 2018, 105, 43.	0.6	10
54	Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads?. Botanical Journal of the Linnean Society, 2014, 175, 299-312.	0.8	9

#	Article	IF	CITATIONS
55	Reciprocal protection from natural enemies in an ant-wasp association. Comptes Rendus - Biologies, 2015, 338, 255-259.	0.1	9
56	Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
57	Potential sources of nitrogen in an ant-garden tank-bromeliad. Plant Signaling and Behavior, 2009, 4, 868-870.	1.2	8
58	Ant–plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic. Biological Journal of the Linnean Society, 2018, 125, 344-354.	0.7	8
59	The hunter becomes the hunted: when cleptobiotic insects are captured by their target ants. Die Naturwissenschaften, 2012, 99, 265-273.	0.6	7
60	Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliadâ€Dwelling Predator. Biotropica, 2015, 47, 569-578.	0.8	7
61	The predatory behavior of the Neotropical social wasp Polybia rejecta. Behavioural Processes, 2017, 140, 161-168.	0.5	7
62	Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia, 2018, 187, 267-279.	0.9	7
63	Ant-lepidopteran associations along African forest edges. Die Naturwissenschaften, 2017, 104, 7.	0.6	6
64	Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecological Indicators, 2020, 119, 106839.	2.6	6
65	Inherited Biotic Protection in a Neotropical Pioneer Plant. PLoS ONE, 2011, 6, e18071.	1.1	6
66	Traits allowing some ant species to nest syntopically with the fire ant <i>Solenopsis saevissima</i> its native range. Insect Science, 2015, 22, 289-294.	1.5	5
67	A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin. Scientific Reports, 2016, 6, 23778.	1.6	5
68	Ecological determinants of community structure across the trophic levels of freshwater food webs: a test using bromeliad phytotelmata. Hydrobiologia, 2020, 847, 391-402.	1.0	5
69	Assemblages of anoxygenic phototrophic bacteria in tank bromeliads exhibit a hostâ€specific signature. Journal of Ecology, 2021, 109, 2550-2565.	1.9	5
70	Ant and spider species as surrogates for functional community composition of epiphyte-associated invertebrates in a tropical moist forest. Ecological Indicators, 2019, 96, 694-700.	2.6	4
71	An uneasy alliance: a nesting association between aggressive ants and equally fierce social wasps. Insect Science, 2020, 27, 122-132.	1.5	4
72	Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities. Ecography, 2021, 44, 440-452.	2.1	4

#	Article	IF	Citations
73	Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic and Applied Ecology, 2021, 56, 32-44.	1.2	4
74	Reactions by army ant workers to nestmates having had contact with sympatric ant species. Comptes Rendus - Biologies, 2014, 337, 642-645.	0.1	3
75	Bat aggregation mediates the functional structure of ant assemblages. Comptes Rendus - Biologies, 2015, 338, 688-695.	0.1	3
76	A mimetic nesting association between a timid social wasp and an aggressive arboreal ant. Comptes Rendus - Biologies, 2018, 341, 182-188.	0.1	3
77	Ants impact the composition of the aquatic macroinvertebrate communities of a myrmecophytic tank bromeliad. Comptes Rendus - Biologies, 2018, 341, 200-207.	0.1	3
78	In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. Journal of Animal Ecology, 2020, 90, 2015-2026.	1.3	3
79	Ant Gardens. , 2020, , 1-4.		3
80	Ants mediate community composition of rootâ€associated fungi in an antâ€plant mutualism. Biotropica, 2022, 54, 645-655.	0.8	3
81	The Weaver Wasp: Spinning Fungus into a Nest. Biotropica, 2010, 42, 402-404.	0.8	2
82	An arboreal spider protects its offspring by diving into the water of tank bromeliads. Comptes Rendus - Biologies, 2018, 341, 196-199.	0.1	2
83	Overview of regionalâ€scale diversity patterns of freshwater algae in a Neotropical bromeliad ecosystem. Freshwater Biology, 2022, 67, 965-977.	1.2	2
84	Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem. Scientific Reports, 2022, 12, 8392.	1.6	2
85	Geographical variation in the traitâ€based assembly patterns of multitrophic invertebrate communities. Functional Ecology, 2023, 37, 73-86.	1.7	2
86	Climate change negatively affects Amazonian social wasps. Biological Journal of the Linnean Society, 2022, 136, 417-422.	0.7	1
87	When attempts at robbing prey turn fatal. Die Naturwissenschaften, 2012, 99, 579-582.	0.6	0
88	Functional redundancy dampens precipitation change impacts on speciesâ€rich invertebrate communities across the Neotropics. Functional Ecology, 2022, 36, 1559-1572.	1.7	0