Kelly S Doran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9207894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy, 2016, 12, 369-380.	9.1	276
3	Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers. PLoS Pathogens, 2014, 10, e1004045.	4.7	258
4	Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. Journal of Clinical Investigation, 2005, 115, 2499-2507.	8.2	202
5	Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Molecular Microbiology, 2004, 54, 23-31.	2.5	182
6	Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. Journal of Clinical Investigation, 2003, 112, 736-744.	8.2	177
7	Host–pathogen interactions in bacterial meningitis. Acta Neuropathologica, 2016, 131, 185-209.	7.7	175
8	Group B Streptococcal Pilus Proteins Contribute to Adherence to and Invasion of Brain Microvascular Endothelial Cells. Journal of Bacteriology, 2007, 189, 1464-1467.	2.2	173
9	Group B Streptococcal βâ€Hemolysin/Cytolysin Promotes Invasion of Human Lung Epithelial Cells and the Release of Interleukinâ€8. Journal of Infectious Diseases, 2002, 185, 196-203.	4.0	158
10	Group B streptococcal Î ² -hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. Journal of Clinical Investigation, 2003, 112, 736-744.	8.2	151
11	Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ, 2015, 3, e1373.	2.0	150
12	Human milk oligosaccharides inhibit growth of group B Streptococcus. Journal of Biological Chemistry, 2017, 292, 11243-11249.	3.4	129
13	Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nature Communications, 2011, 2, 462.	12.8	116
14	Bacterial induction of Snail1 contributes to blood-brain barrier disruption. Journal of Clinical Investigation, 2015, 125, 2473-2483.	8.2	114
15	The Group B Streptococcal Serineâ€Rich Repeat 1 Glycoprotein Mediates Penetration of the Bloodâ€Brain Barrier. Journal of Infectious Diseases, 2009, 199, 1479-1487.	4.0	108
16	Concepts and Mechanisms: Crossing Host Barriers. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010090-a010090.	6.2	106
17	Regulation of CovR expression in Group B Streptococcus impacts blood–brain barrier penetration. Molecular Microbiology, 2010, 77, 431-443.	2.5	96
18	Binding of Glycoprotein Srr1 of Streptococcus agalactiae to Fibrinogen Promotes Attachment to Brain Endothelium and the Development of Meningitis. PLoS Pathogens, 2012, 8, e1002947.	4.7	93

#	Article	IF	CITATIONS
19	Group Bâ€ <i>Streptococcus</i> â€CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cellular Microbiology, 2013, 15, 1154-1167.	2.1	90
20	Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract. Journal of Bacteriology, 2011, 193, 6834-6842.	2.2	89
21	A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence. FASEB Journal, 2008, 22, 1715-1724.	0.5	82
22	Characterization of Fibrinogen Binding by Glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. Journal of Biological Chemistry, 2013, 288, 35982-35996.	3.4	78
23	The CiaR Response Regulator in Group B <i>Streptococcus</i> Promotes Intracellular Survival and Resistance to Innate Immune Defenses. Journal of Bacteriology, 2009, 191, 2023-2032.	2.2	77
24	Identification of a Group B Streptococcal Fibronectin Binding Protein, SfbA, That Contributes to Invasion of Brain Endothelium and Development of Meningitis. Infection and Immunity, 2014, 82, 2276-2286.	2.2	72
25	Group B Streptococcal Serine-Rich Repeat Proteins Promote Interaction With Fibrinogen and Vaginal Colonization. Journal of Infectious Diseases, 2014, 210, 982-991.	4.0	71
26	Analysis of Two-Component Systems in Group B <i>Streptococcus</i> Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness. MBio, 2014, 5, e00870-14.	4.1	67
27	The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. PLoS Pathogens, 2019, 15, e1007848.	4.7	63
28	A Murine Model of Group B Streptococcus Vaginal Colonization. Journal of Visualized Experiments, 2016, , .	0.3	53
29	Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection. Journal of Clinical Investigation, 2018, 128, 1985-1999.	8.2	51
30	The Role of Autophagy during Group B Streptococcus Infection of Blood-Brain Barrier Endothelium. Journal of Biological Chemistry, 2014, 289, 35711-35723.	3.4	50
31	Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization. Infection and Immunity, 2015, 83, 3438-3444.	2.2	50
32	Modeling Group B <i>Streptococcus</i> and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. MSphere, 2017, 2, .	2.9	46
33	Streptococcus agalactiae infection in zebrafish larvae. Microbial Pathogenesis, 2015, 79, 57-60.	2.9	44
34	Serine/Threonine Phosphatase Stp1 Mediates Post-transcriptional Regulation of Hemolysin, Autolysis, and Virulence of Group B Streptococcus. Journal of Biological Chemistry, 2011, 286, 44197-44210.	3.4	41
35	Cas9 Contributes to Group B Streptococcal Colonization and Disease. Frontiers in Microbiology, 2019, 10, 1930.	3.5	35
36	Identification of Key Determinants of Staphylococcus aureus Vaginal Colonization. MBio, 2019, 10, .	4.1	33

#	Article	IF	CITATIONS
37	Characterization of a Two-Component System Transcriptional Regulator, LtdR, That Impacts Group B Streptococcal Colonization and Disease. Infection and Immunity, 2018, 86, .	2.2	32
38	Identification of Zinc-Dependent Mechanisms Used by Group B <i>Streptococcus</i> To Overcome Calprotectin-Mediated Stress. MBio, 2020, 11, .	4.1	30
39	Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. PLoS ONE, 2019, 14, e0226699.	2.5	29
40	Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells. PLoS ONE, 2016, 11, e0153891.	2.5	28
41	Contribution of pilus type 2b to invasive disease caused by a Streptococcus agalactiae ST-17 strain. BMC Microbiology, 2017, 17, 148.	3.3	22
42	Mast cell chymase decreases the severity of group B Streptococcus infections. Journal of Allergy and Clinical Immunology, 2018, 142, 120-129.e6.	2.9	22
43	Group B Streptococcal Infection and Activation of Human Astrocytes. PLoS ONE, 2015, 10, e0128431.	2.5	20
44	Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer, 2017, 17, 133.	2.6	20
45	Streptococcus agalactiae disrupts P-glycoprotein function in brain endothelial cells. Fluids and Barriers of the CNS, 2019, 16, 26.	5.0	18
46	A type VII secretion system in Group B Streptococcus mediates cytotoxicity and virulence. PLoS Pathogens, 2021, 17, e1010121.	4.7	18
47	Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. Laboratory Investigation, 2014, 94, 161-181.	3.7	17
48	The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Frontiers in Microbiology, 2020, 11, 602305.	3.5	16
49	Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infection and Immunity, 2020, 88, .	2.2	16
50	Bacterial protein domains with a novel Igâ€like fold target human CEACAM receptors. EMBO Journal, 2021, 40, e106103.	7.8	16
51	Past and Current Perspectives in Modeling Bacteria and Blood–Brain Barrier Interactions. Frontiers in Microbiology, 2019, 10, 1336.	3.5	13
52	The Sensor Histidine Kinase RgfC Affects Group B Streptococcal Virulence Factor Expression Independent of Its Response Regulator RgfA. Infection and Immunity, 2015, 83, 1078-1088.	2.2	12
53	Complete Genome Sequence of Neonatal Clinical Group B Streptococcal Isolate CJB111. Microbiology Resource Announcements, 2021, 10, .	0.6	10
54	Role of MUC5B during Group B Streptococcal Vaginal Colonization. MBio, 2022, 13, e0003922.	4.1	10

#	Article	IF	CITATIONS
55	Comparative genomic analysis and identification of pathogenicity islands of hypervirulent ST-17 Streptococcus agalactiae Brazilian strain. Infection, Genetics and Evolution, 2020, 80, 104195.	2.3	9
56	Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. MBio, 2022, 13, .	4.1	9
57	Multidimensional Proteome Profiling of Blood-Brain Barrier Perturbation by Group B <i>Streptococcus</i> . MSystems, 2020, 5, .	3.8	7
58	Identification of a novel cationic glycolipid in Streptococcus agalactiae that contributes to brain entry and meningitis. PLoS Biology, 2022, 20, e3001555.	5.6	7
59	Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathogens, 2022, 18, e1010397.	4.7	6
60	Vimentin regulates chemokine expression and NOD2 activation in brain endothelium during Group B streptococcal infection Infection and Immunity, 2021, 89, e0034021.	2.2	4
61	Streptococcus agalactiae strains isolated from cancer patients in Rio de Janeiro, Brazil. Brazilian Journal of Microbiology, 2021, 52, 303-310.	2.0	2
62	Global Annotation, Expression Analysis, and Stability of Candidate sRNAs in Group B Streptococcus. MBio, 2021, , e0280321.	4.1	2
63	The Virtual Streptococcal Seminar Series and Trainee Symposium: Adaptations of a Research Community during the COVID-19 Pandemic. Journal of Microbiology and Biology Education, 2021, 22, .	1.0	1
64	Importance of strain lineages for Group B streptococcal survival. Virulence, 2017, 8, 646-648.	4.4	0
65	Characterization of group B streptococcal infection of astrocytes and the impact on the bloodâ€brain barrier (145.8). FASEB Journal, 2014, 28, 145.8.	0.5	0
66	Human Milk Oligosaccharides versus Streptococcus: How a Human-Made Natural Product Protects Us from Pathogens. MSphere, 2022, 7, e0004922.	2.9	0