
Jinxing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9207891/publications.pdf Version: 2024-02-01

LINXING WANG

#	Article	IF	CITATIONS
1	Prussian Blue Analogue Derived Co ₃ O ₄ /CuO Nanoparticles as Effective Oxygen Reduction Reaction Catalyst for Magnesium-Air Battery. Journal of the Electrochemical Society, 2022, 169, 010532.	2.9	5
2	Core-Shell CuS@MoS ₂ Cathodes for High-Performance Hybrid Mg-Li Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 073502.	2.9	2
3	The potential application of VS2 as an electrode material for Mg ion battery: A DFT study. Applied Surface Science, 2021, 544, 148775.	6.1	50
4	Boosting magnesium storage in MoS ₂ <i>via</i> a 1T phase introduction and interlayer expansion strategy: theoretical prediction and experimental verification. Sustainable Energy and Fuels, 2021, 5, 5471-5480.	4.9	4
5	CuMnO ₂ Nanoflakes as Cathode Catalyst for Oxygen Reduction Reaction in Magnesium-Air Battery. Journal of the Electrochemical Society, 2021, 168, 100502.	2.9	11
6	First-principles prediction of layered MoO ₂ and MoOSe as promising cathode materials for magnesium ion batteries. Nanotechnology, 2021, 32, 495405.	2.6	5
7	Enhancing Mg ²⁺ and Mg ²⁺ /Li ⁺ Storage by Introducing Active Defect Sites and Edge Surfaces in MoSe ₂ . ChemElectroChem, 2021, 8, 4252-4260.	3.4	3
8	Facile hydrothermal synthesis of 3D flower-like NiCo2O4/CeO2 composite as effective oxygen reduction reaction catalyst. Journal of Materials Science: Materials in Electronics, 2020, 31, 16600-16608.	2.2	6
9	Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO2. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 191-197.	2.7	23
10	Morphology-controllable synthesis of CuCo2O4 arrays on Ni foam as advanced electrodes for supercapacitors. Journal of Alloys and Compounds, 2019, 789, 193-200.	5.5	56
11	Enhanced electrocatalytic activity of a hierarchical CeO2 @MnO2 core-shell composite for oxygen reduction reaction. Ceramics International, 2018, 44, 23073-23079.	4.8	20
12	Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes. Ceramics International, 2018, 44, 18770-18775.	4.8	53
13	Synthesis of 3D Mesoporous Wall-Like MnO2 with Improved Electrochemical Performance. Journal of Electronic Materials, 2017, 46, 1539-1545.	2.2	5
14	Hydrothermal preparation of nickel-manganese oxide with microsphere structure grown on Ni foam and supercapacitive performance. Materials Letters, 2017, 187, 11-14.	2.6	9
15	Ni@NiCo2O4 core/shells composite as electrode material for supercapacitor. Ceramics International, 2017, 43, 2057-2062.	4.8	29
16	Electrochemical properties of hollow MnO2 nanostructure: synthesis and application. Journal of Materials Science: Materials in Electronics, 2017, 28, 418-425.	2.2	7
17	Facile synthesis of three-dimensional NiCo ₂ O ₄ with different morphology for supercapacitors. RSC Advances, 2016, 6, 70077-70084.	3.6	75
18	Nanosheet-assembled hollow NiO ball-flower for high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2016, 27, 8020-8026.	2.2	9

JINXING WANG

#	Article	IF	CITATIONS
19	Ag2O loaded NiO ball-flowers for high performance supercapacitors. Materials Letters, 2016, 177, 71-75.	2.6	22
20	Quick determination of included angles distribution for miscut substrate. Measurement: Journal of the International Measurement Confederation, 2016, 89, 300-304.	5.0	2
21	Facile synthesis of NiMn 2 O 4 nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors. Ceramics International, 2016, 42, 14963-14969.	4.8	75
22	Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application. Materials Letters, 2016, 162, 67-70.	2.6	44
23	Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceramics International, 2015, 41, 12626-12632.	4.8	83
24	Control synthesis and formation mechanism of sphereâ€like titanium dioxide. Micro and Nano Letters, 2015, 10, 23-27.	1.3	1
25	A study on the precursor of vanadium pentoxide by the hydrothermal method. Ceramics International, 2014, 40, 317-321.	4.8	11
26	Hydrothermal synthesis of vanadium pentoxide nanostructures and their morphology control. Ceramics International, 2013, 39, 2639-2643.	4.8	31
27	Structural and strain relaxation study of epitaxially grown nano-thick Nd <inf>2</inf> 0 <inf>3</inf> /Si(111) heterostructure. , 2009, , .		1
28	Crystalline Nanoscale M ₂ O ₃ (M=Gd, Nd) Thin Films Grown by Molecular Beam Epitaxy on Si(111). Materials Transactions, 2009, 50, 2115-2117.	1.2	4