Alejandro R Ribeiro

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9207101/alejandro-r-ribeiro-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

298 papers

5,415 citations

41 h-index 65 g-index

381 ext. papers

7,237 ext. citations

4.7 avg, IF

6.63 L-index

#	Paper	IF	Citations
298	Scalable Perception-Action-Communication Loops With Convolutional and Graph Neural Networks. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 12-24	2.8	O
297	Learning Connectivity-Maximizing Network Configurations. <i>IEEE Robotics and Automation Letters</i> , 2022 , 1-1	4.2	0
296	Learning Decentralized Wireless Resource Allocations with Graph Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2022 , 1-1	4.8	3
295	Policy Gradient for Continuing Tasks in Discounted Markov Decision Processes. <i>IEEE Transactions on Automatic Control</i> , 2022 , 1-1	5.9	
294	Spherical convolutional neural networks: Stability to perturbations in SO(3). <i>Signal Processing</i> , 2022 , 196, 108529	4.4	
293	Model-Free design of control systems over wireless fading channels. Signal Processing, 2022, 197, 10854	10 .4	1
292	Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation Learning. <i>IEEE Transactions on Signal Processing</i> , 2022 , 1-1	4.8	2
291	Safe Policies for Reinforcement Learning via Primal-Dual Methods. <i>IEEE Transactions on Automatic Control</i> , 2022 , 1-1	5.9	0
290	Multi-Robot Coverage and Exploration using Spatial Graph Neural Networks 2021,		2
289	Resource Allocation via Model-Free Deep Learning in Free Space Optical Communications. <i>IEEE Transactions on Communications</i> , 2021 , 1-1	6.9	1
288	Multi-Task Reinforcement Learning in Reproducing Kernel Hilbert Spaces via Cross-Learning. <i>IEEE Transactions on Signal Processing</i> , 2021 , 1-1	4.8	1
287	ROS-NetSim: A Framework for the Integration of Robotic and Network Simulators. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 1120-1127	4.2	5
286	Graph Neural Networks: Architectures, Stability, and Transferability. <i>Proceedings of the IEEE</i> , 2021 , 109, 660-682	14.3	20
285	The Dual Graph Shift Operator: Identifying the Support of the Frequency Domain. <i>Journal of Fourier Analysis and Applications</i> , 2021 , 27, 1	1.1	2
284	VGAI: End-to-End Learning of Vision-Based Decentralized Controllers for Robot Swarms 2021,		3
283	Discriminability of Single-Layer Graph Neural Networks 2021,		1
282	Graph Neural Networks for Decentralized Controllers 2021 ,		2

281	Unsupervised Learning for Asynchronous Resource Allocation In Ad-Hoc Wireless Networks 2021 ,		4	
280	Approximate Supermodularity of Kalman Filter Sensor Selection. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 49-63	5.9	6	
279	Stochastic Policy Gradient Ascent in Reproducing Kernel Hilbert Spaces. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 3429-3444	5.9	5	
278	Policy Evaluation in Continuous MDPs With Efficient Kernelized Gradient Temporal Difference. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 1856-1863	5.9	4	
277	Approximately Supermodular Scheduling Subject to Matroid Constraints. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	O	
276	Stochastic Graph Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2021 , 69, 4428-4443	4.8	2	
275	Algebraic Neural Networks: Stability to Deformations. <i>IEEE Transactions on Signal Processing</i> , 2021 , 69, 3351-3366	4.8	2	
274	Large Scale Distributed Collaborative Unlabeled Motion Planning With Graph Policy Gradients. <i>IEEE Robotics and Automation Letters</i> , 2021 , 1-1	4.2	1	
273	Stability of graph convolutional neural networks to stochastic perturbations. <i>Signal Processing</i> , 2021 , 188, 108216	4.4	4	
272	. IEEE Transactions on Signal Processing, 2021 , 69, 4961-4976	4.8	4	
271	EdgeNets:Edge Varying Graph Neural Networks. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , PP,	13.3	2	
270	Stability Properties of Graph Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 5680-5	69 58	31	
269	Model-Free Learning of Optimal Ergodic Policies in Wireless Systems. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 6272-6286	4.8	1	
268	Better Safe Than Sorry: Risk-Aware Nonlinear Bayesian Estimation 2020 ,		2	
267	Optimal Power Flow Using Graph Neural Networks 2020 ,		17	
266	Optimal Wireless Resource Allocation With Random Edge Graph Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 2977-2991	4.8	55	
265	Distributed Constrained Online Learning. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 3486-3499	4.8	1	
264	A Response to Rosalind Barber Critique of the Word Adjacency Method for Authorship Attribution. ANQ-a Quarterly Journal of Short Articles Notes and Reviews, 2020, 1-6	О	1	

263	Transferable Policies for Large Scale Wireless Networks with Graph Neural Networks 2020,		2
262	Stochastic Graph Neural Networks 2020 ,		2
261	Sparse Multiresolution Representations With Adaptive Kernels. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 2031-2044	4.8	0
260	Functional Nonlinear Sparse Models. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 2449-2463	4.8	2
259	Decentralized Wireless Resource Allocation with Graph Neural Networks 2020,		1
258	Graph Neural Networks for Decentralized Multi-Robot Path Planning 2020,		23
257	. IEEE Signal Processing Magazine, 2020 , 37, 128-138	9.4	28
256	Resource Allocation in Large-Scale Wireless Control Systems with Graph Neural Networks. <i>IFAC-PapersOnLine</i> , 2020 , 53, 2634-2641	0.7	2
255	Rethinking sketching as sampling: A graph signal processing approach. Signal Processing, 2020, 169, 107	404	6
254	Invariance-Preserving Localized Activation Functions for Graph Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 127-141	4.8	14
253	Mobile Wireless Network Infrastructure on Demand 2020,		5
252	Stochastic Quasi-Newton Methods. <i>Proceedings of the IEEE</i> , 2020 , 108, 1906-1922	14.3	3
251	Random Access Communication for Wireless Control Systems With Energy Harvesting Sensors. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 3961-3975	4.8	4
250	Wireless Power Control via Counterfactual Optimization of Graph Neural Networks 2020,		6
249	The Graphon Fourier Transform 2020 ,		3
248	Control-Aware Scheduling for Low Latency Wireless Systems with Deep Learning 2020,		1
247	Scheduling Low Latency Traffic for Wireless Control Systems in 5G Networks 2020 ,		2
246	Resource Allocation in Wireless Control Systems via Deep Policy Gradient 2020 ,		1

245	Gated Graph Recurrent Neural Networks. <i>IEEE Transactions on Signal Processing</i> , 2020 , 68, 6303-6318	4.8	17
244	Stochastic Artificial Potentials for Online Safe Navigation. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 1985-2000	5.9	2
243	A Response to Pervez Rizvill Critique of the Word Adjacency Method for Authorship Attribution. <i>ANQ-a Quarterly Journal of Short Articles Notes and Reviews</i> , 2020 , 33, 332-337	Ο	1
242	Sparse Learning of Parsimonious Reproducing Kernel Hilbert Space Models 2019 ,		3
241	Large Scale Wireless Power Allocation with Graph Neural Networks 2019,		10
240	A Newton-Based Method for Nonconvex Optimization with Fast Evasion of Saddle Points. <i>SIAM Journal on Optimization</i> , 2019 , 29, 343-368	2	7
239	Dual Domain Learning of Optimal Resource Allocations in Wireless Systems 2019,		1
238	Median Activation Functions for Graph Neural Networks 2019 ,		4
237	Aggregation Graph Neural Networks 2019 ,		5
236	Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 7878-7890	10.7	22
235	Control Aware Communication Design for Time Sensitive Wireless Systems 2019,		3
234	. IEEE Signal Processing Magazine, 2019 , 36, 16-43	9.4	138
233	Learning Optimal Resource Allocations in Wireless Systems. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 2775-2790	4.8	74
232	Ergodicity in Stationary Graph Processes: A Weak Law of Large Numbers. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 2761-2774	4.8	9
231	. IEEE Transactions on Signal Processing, 2019 , 67, 6440-6454	4.8	11
230	Modeling mmWave Channels in High-Fidelity Simulations of Unmanned Aerial Systems 2019,		1
229	Inverse Optimal Planning for Air Traffic Control 2019 ,		1
228	Constrained Online Learning in Networks with Sublinear Regret and Fit 2019 ,		2

227	Learning Safe Unlabeled Multi-Robot Planning with Motion Constraints 2019,		7
226	Gated Graph Convolutional Recurrent Neural Networks 2019 ,		11
225	Learning Safe Policies via Primal-Dual Methods 2019 ,		3
224	Convolutional Graph Neural Networks 2019 ,		3
223	Matroid-Constrained Approximately Supermodular Optimization for Near-Optimal Actuator Scheduling 2019 ,		3
222	Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs 2019,		3
221	Real-Time Model Predictive Control Based on Prediction-Correction Algorithms 2019,		3
220	A Primal-Dual Quasi-Newton Method for Exact Consensus Optimization. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 5983-5997	4.8	10
219	Convolutional Neural Network Architectures for Signals Supported on Graphs. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 1034-1049	4.8	94
218	Learning in Wireless Control Systems Over Nonstationary Channels. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 1123-1137	4.8	8
217	. Proceedings of the IEEE, 2018 , 106, 868-885	14.3	91
216	Prediction-Correction Interior-Point Method for Time-Varying Convex Optimization. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1973-1986	5.9	36
215	Hierarchical clustering of asymmetric networks. <i>Advances in Data Analysis and Classification</i> , 2018 , 12, 65-105	1.8	5
214	Functional Alignment with Anatomical Networks is Associated with Cognitive Flexibility. <i>Nature Human Behaviour</i> , 2018 , 2, 156-164	12.8	66
213	Random access design for wireless control systems. <i>Automatica</i> , 2018 , 91, 1-9	5.7	15
212	Navigation Functions for Convex Potentials in a Space With Convex Obstacles. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2944-2959	5.9	24
211	Decentralized Online Learning With Kernels. IEEE Transactions on Signal Processing, 2018, 66, 3240-3255	54.8	25
210	Hierarchical Clustering Given Confidence Intervals of Metric Distances. <i>IEEE Transactions on Signal Processing</i> , 2018 , 66, 2600-2615	4.8	2

209	Distributed Inertial Best-Response Dynamics. IEEE Transactions on Automatic Control, 2018, 63, 4294-43	050 9	8
208	Greedy Sampling of Graph Signals. IEEE Transactions on Signal Processing, 2018, 66, 34-47	4.8	48
207	Demand Response With Communicating Rational Consumers. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 469-482	10.7	8
206	Hierarchical Overlapping Clustering of Network Data Using Cut Metrics. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2018 , 4, 392-406	2.8	
205	Multiagent Distributed Optimization 2018 , 147-167		1
204	Game Theoretic Learning 2018 , 209-235		1
203	Distributed Fictitious Play for Multiagent Systems in Uncertain Environments. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1177-1184	5.9	4
202	Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate. <i>SIAM Journal on Optimization</i> , 2018 , 28, 1420-1447	2	11
201	Learning in Non-Stationary Wireless Control Systems via Newton's Method 2018,		4
200	A Prediction-Correction Method for Model Predictive Control 2018,		8
199	MIMO Graph Filters for Convolutional Neural Networks 2018,		4
198	Rating Prediction via Graph Signal Processing. <i>IEEE Transactions on Signal Processing</i> , 2018 , 66, 5066-50	84 .8	29
197	Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems 2018 ,		7
196	. IEEE Transactions on Signal Processing, 2018 , 66, 412-427	4.8	1
195	2018,		3
194	Online Deep Learning in Wireless Communication Systems 2018,		2
193	Parallel Stochastic Successive Convex Approximation Method for Large-Scale Dictionary Learning 2018 ,		5
192	Predicting Power Outages Using Graph Neural Networks 2018 ,		11

191	Distributed Smooth and Strongly Convex Optimization with Inexact Dual Methods 2018,		4
190	Matrix Completion as Graph Bandlimited Reconstruction 2018,		1
189	Graph Signal Processing of Human Brain Imaging Data 2018,		1
188	Analysis of Optimization Algorithms via Integral Quadratic Constraints: Nonstrongly Convex Problems. <i>SIAM Journal on Optimization</i> , 2018 , 28, 2654-2689	2	33
187	CONVOLUTIONAL NEURAL NETWORKS VIA NODE-VARYING GRAPH FILTERS 2018,		10
186	IQN: An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate. <i>SIAM Journal on Optimization</i> , 2018 , 28, 1670-1698	2	17
185	Stylometric analysis of Early Modern period English plays. <i>Digital Scholarship in the Humanities</i> , 2018 , 33, 500-528	0.6	9
184	. IEEE Transactions on Signal Processing, 2018 , 66, 3363-3376	4.8	8
183	Admissible Hierarchical Clustering Methods and Algorithms for Asymmetric Networks. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2017 , 3, 711-727	2.8	3
182	Online Learning of Feasible Strategies in Unknown Environments. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 2807-2822	5.9	19
181	D4L: Decentralized Dynamic Discriminative Dictionary Learning. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2017 , 3, 728-743	2.8	9
180	Decentralized Quasi-Newton Methods. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 2613-2628	4.8	55
179	Decentralized Prediction-Correction Methods for Networked Time-Varying Convex Optimization. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5724-5738	5.9	32
178	Proximity Without Consensus in Online Multiagent Optimization. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 3062-3077	4.8	37
177	Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 4117-4131	4.8	130
176	Axiomatic hierarchical clustering given intervals of metric distances 2017,		1
175	. IEEE Transactions on Robotics, 2017 , 33, 1248-1254	6.5	29
174	. IEEE Transactions on Signal Processing, 2017 , 65, 3078-3093	4.8	29

(2017-2017)

173	Blind Identification of Graph Filters. IEEE Transactions on Signal Processing, 2017, 65, 1146-1159	4.8	44
172	Decentralized efficient nonparametric stochastic optimization 2017,		2
171	A variational approach to dual methods for constrained convex optimization 2017,		3
170	Brain network efficiency is influenced by the pathologic source of corticobasal syndrome. <i>Neurology</i> , 2017 , 89, 1373-1381	6.5	20
169	Network Topology Inference from Spectral Templates. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2017 , 3, 467-483	2.8	107
168	. IEEE Transactions on Signal Processing, 2017 , 65, 5911-5926	4.8	82
167	Universal bounds for the sampling of graph signals 2017 ,		1
166	Brain signal analytics from graph signal processing perspective 2017 ,		10
165	Random access policies for wireless networked control systems with energy harvesting sensors 2017 ,		2
164	An incremental quasi-Newton method with a local superlinear convergence rate 2017,		1
163	Large-scale nonconvex stochastic optimization by Doubly Stochastic Successive Convex approximation 2017 ,		4
162	2017,		2
161	Stochastic backpressure in energy harvesting networks 2017 ,		4
160	Persistent Homology Lower Bounds on High-Order Network Distances. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 319-334	4.8	7
159	Network Newton Distributed Optimization Methods. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 146-161	4.8	87
158	The mean square error in Kalman filtering sensor selection is approximately supermodular 2017,		11
157	2017,		8
156	A primal-dual Quasi-Newton method for consensus optimization 2017 ,		1

155	Weak law of large numbers for stationary graph processes 2017 ,		5
154	2017,		10
153	Collaborative filtering via graph signal processing 2017,		9
152	A dynamical systems perspective to convergence rate analysis of proximal algorithms 2017,		2
151	Finite-precision effects on graph filters 2017,		7
150	Safe online navigation of convex potentials in spaces with convex obstacles 2017,		2
149	Representable Hierarchical Clustering Methods for Asymmetric Networks. <i>Studies in Classification, Data Analysis, and Knowledge Organization</i> , 2017 , 83-95	0.2	
148	Graph Frequency Analysis of Brain Signals. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2016 , 10, 1189-1203	7.5	82
147	A Decentralized Second-Order Method with Exact Linear Convergence Rate for Consensus Optimization. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2016 , 2, 507-522	2.8	46
146	System architectures for communication-aware multi-robot navigation 2016 ,		2
145	Interior point method for dynamic constrained optimization in continuous time 2016,		11
144	Near-optimality of greedy set selection in the sampling of graph signals 2016,		12
143	Rethinking sketching as sampling: Efficient approximate solution to linear inverse problems 2016,		1
142	Decentralized constrained consensus optimization with primal dual splitting projection 2016,		3
141	Hybrid architecture for communication-aware multi-robot systems 2016,		5
140	Control-Aware Random Access Communication 2016,		7
139	Reconstruction of Graph Signals Through Percolation from Seeding Nodes. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 4363-4378	4.8	44
138	Diffusion filtering of graph signals and its use in recommendation systems 2016 ,		17

(2016-2016)

137	Sampling of Graph Signals With Successive Local Aggregations. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 1832-1843	4.8	139
136	Metrics in the Space of High Order Networks. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 615-629	4.8	8
135	Learning to Coordinate in Social Networks. <i>Operations Research</i> , 2016 , 64, 605-621	2.3	5
134	Stability and Continuity of Centrality Measures in Weighted Graphs. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 543-555	4.8	43
133	An asynchronous Quasi-Newton method for consensus optimization 2016 ,		3
132	Attributing the Authorship of the Henry VI Plays by Word Adjacency. <i>Shakespeare Quarterly</i> , 2016 , 67, 232-256	Ο	35
131	A Class of Prediction-Correction Methods for Time-Varying Convex Optimization. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 4576-4591	4.8	47
130	Rethinking sketching as sampling: Linear transforms of graph signals 2016,		4
129	Network topology identification from imperfect spectral templates 2016,		3
128	A Quasi-newton prediction-correction method for decentralized dynamic convex optimization 2016 ,		3
127	Online optimization in dynamic environments: Improved regret rates for strongly convex problems 2016 ,		51
126	A decentralized quasi-Newton method for dual formulations of consensus optimization 2016,		7
125	Self-triggered time-varying convex optimization 2016,		15
124	State-based communication design for wireless control systems 2016 ,		16
123	Online learning for characterizing unknown environments in ground robotic vehicle models 2016,		6
122	Blind identification of graph filters with multiple sparse inputs 2016,		2
121	Persistent homology lower bounds on network distances 2016 ,		3
120	Linear network operators using node-variant graph filters 2016 ,		4

119	Proximity without consensus in online multi-agent optimization 2016,		9
118	Doubly random parallel stochastic methods for large scale learning 2016,		11
117	Center-weighted median graph filters 2016 ,		8
116	Stationary graph processes: Nonparametric spectral estimation 2016,		4
115	A decentralized Second-Order Method for Dynamic Optimization 2016,		6
114	Distributed continuous-time online optimization using saddle-point methods 2016,		7
113	DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 5158-5173	4.8	51
112	Overlapping clustering of network data using cut metrics 2016 ,		2
111	Network topology identification from spectral templates 2016 ,		3
110	DLM: Decentralized Linearized Alternating Direction Method of Multipliers. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 4051-4064	4.8	93
110		4.8	93
	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE</i>		
109	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 3082-3094 Diffusion and Superposition Distances for Signals Supported on Networks. <i>IEEE Transactions on</i>	10.7	43
109	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 3082-3094 Diffusion and Superposition Distances for Signals Supported on Networks. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2015 , 1, 20-32 A Saddle Point Algorithm for Networked Online Convex Optimization. <i>IEEE Transactions on Signal</i>	10.7	43
109	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 3082-3094 Diffusion and Superposition Distances for Signals Supported on Networks. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2015 , 1, 20-32 A Saddle Point Algorithm for Networked Online Convex Optimization. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 5149-5164 Opportunistic Control Over Shared Wireless Channels. <i>IEEE Transactions on Automatic Control</i> , 2015	10.7 2.8 4.8	43 12 68
109 108 107	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 3082-3094 Diffusion and Superposition Distances for Signals Supported on Networks. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2015 , 1, 20-32 A Saddle Point Algorithm for Networked Online Convex Optimization. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 5149-5164 Opportunistic Control Over Shared Wireless Channels. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3140-3155	10.7 2.8 4.8	43 12 68 58
109 108 107 106	Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 3082-3094 Diffusion and Superposition Distances for Signals Supported on Networks. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2015 , 1, 20-32 A Saddle Point Algorithm for Networked Online Convex Optimization. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 5149-5164 Opportunistic Control Over Shared Wireless Channels. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3140-3155 An approximate Newton method for distributed optimization 2015 ,	10.7 2.8 4.8	43 12 68 58 16

(2015-2015)

101	Online Learning over a Decentralized Network Through ADMM. <i>Journal of the Operations Research Society of China</i> , 2015 , 3, 537-562	1.3	4
100	Distributed implementation of linear network operators using graph filters 2015,		25
99	Target tracking with dynamic convex optimization 2015,		6
98	Reconstruction of graph signals: Percolation from a single seeding node 2015,		4
97	Blind identification of graph filters with sparse inputs 2015 ,		4
96	D4L: Decentralized dynamic discriminative dictionary learning 2015 ,		6
95	Authorship Attribution Through Function Word Adjacency Networks. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 5464-5478	4.8	40
94	Diffusion distance for signals supported on networks 2015 ,		2
93	Decentralized double stochastic averaging gradient 2015 ,		5
92	Real-Time Pricing with uncertain and heterogeneous consumer preferences 2015 ,		1
91	Interpolation of graph signals using shift-invariant graph filters 2015 ,		16
90	2015,		13
89	Stability and continuity of centrality measures in weighted graphs 2015 ,		1
88	Prediction-correction methods for time-varying convex optimization 2015 ,		7
87	Regret bounds of a distributed saddle point algorithm 2015 ,		5
86	Online learning of feasible strategies in unknown environments 2015 ,		1
85	Control with random access wireless sensors 2015 ,		7
84	Distributed fictitious play in potential games of incomplete information 2015,		2

83	Bayesian Quadratic Network Game Filters. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 2250-2264 4.8	8	
82	Optimal Power Management in Wireless Control Systems. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1495-1510	92	2
81	Accelerated Dual Descent for Network Flow Optimization. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 905-920	52	2
80	Opportunistic scheduling of control tasks over shared wireless channels 2014 ,	3	
79	Distributed demand side management of heterogeneous rational consumers in smart grids with renewable sources 2014 ,	5	
78	Decentralized linearized alternating direction method of multipliers 2014,	17	7
77	Decentralized Dynamic Optimization Through the Alternating Direction Method of Multipliers. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 1185-1197	86	6
76	Opportunistic sensor scheduling in wireless control systems 2014 ,	3	
75	A quasi-Newton method for large scale support vector machines 2014 ,	6	
74	A saddle point algorithm for networked online convex optimization 2014 ,	12	2
73	Robust routing and Multi-Confirmation Transmission Protocol for connectivity management of mobile robotic teams 2014 ,	4	
72	Network Newton 2014 ,	7	
71	RES: Regularized Stochastic BFGS Algorithm. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 6089-6104 ₄ .8	67	7
70	Discounted integral priority routing for data networks 2014 ,	1	
69	A stable betweenness centrality measure in networks 2014 ,	6	
68	Optimal Wireless Communications With Imperfect Channel State Information. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 2751-2766	10	0
67	2013,	12	2
66	A dual stochastic DFP algorithm for optimal resource allocation in wireless systems 2013 ,	5	

65	Optimal power management in wireless control systems 2013,		17
64	Network Integrity in Mobile Robotic Networks. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 3-18	5.9	59
63	. IEEE Access, 2013 , 1, 290-309	3.5	66
62	Accelerated backpressure algorithm 2013,		13
61	Learning in network games with incomplete information: asymptotic analysis and tractable implementation of rational behavior. <i>IEEE Signal Processing Magazine</i> , 2013 , 30, 30-42	9.4	16
60	Axiomatic construction of hierarchical clustering in asymmetric networks 2013,		6
59	Alternative axiomatic constructions for hierarchical clustering of asymmetric networks 2013,		2
58	D-MAP: Distributed Maximum a Posteriori Probability Estimation of Dynamic Systems. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 450-466	4.8	48
57	Hierarchical clustering methods and algorithms for asymmetric networks 2013,		4
56	Regularized stochastic BFGS algorithm 2013 ,		5
55	Authorship attribution using function words adjacency networks 2013,		13
54	Power-aware communication for wireless sensor-actuator systems 2013,		2
53	Bayesian Quadratic Network Game filters 2013 ,		4
52	Robust Control for Mobility and Wireless Communication in Cyber P hysical Systems With Application to Robot Teams. <i>Proceedings of the IEEE</i> , 2012 , 100, 164-178	14.3	85
51	Motion planning for robust wireless networking 2012 ,		16
50	Dynamic games with side information in economic networks 2012 ,		2
49	2012,		5
48	Adaptive communication-constrained deployment of mobile robotic networks 2012 ,		3

47	Adaptive Communication-Constrained Deployment of Unmanned Vehicle Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2012 , 30, 923-934	14.2	28
46	Optimal resource allocation in wireless communication and networking. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2012 , 2012,	3.2	44
45	Optimal Wireless Networks Based on Local Channel State Information. <i>IEEE Transactions on Signal Processing</i> , 2012 , 60, 4913-4929	4.8	9
44	Distributed Network Optimization With Heuristic Rational Agents. <i>IEEE Transactions on Signal Processing</i> , 2012 , 60, 5396-5411	4.8	19
43	Distributed maximum a posteriori probability estimation of dynamic systems with wireless sensor networks 2012 ,		2
42	Optimal wireless multiuser channels with imperfect channel state information 2012,		4
41	A distributed line search for network optimization 2012 ,		11
40	Network optimization under uncertainty 2012 ,		5
39	Network optimization with heuristic rational agents 2011 ,		1
38	Distributed control of mobility & routing in networks of robots 2011 ,		7
37	Robot deployment with end-to-end communication constraints 2011,		2
36	Optimal wireless networks based on local channel state information 2011,		1
35	A framework for integrating mobility and routing in mobile communication networks 2011,		3
34	Adaptive Distributed Algorithms for Optimal Random Access Channels. <i>IEEE Transactions on Wireless Communications</i> , 2011 , 10, 2703-2715	9.6	19
33	Accelerated dual descent for network optimization 2011,		20
32	Adaptive distributed algorithms for optimal random access channels 2010,		6
31	A class of convergent algorithms for resource allocation in wireless fading networks. <i>IEEE Transactions on Wireless Communications</i> , 2010 , 9, 1808-1823	9.6	21
30	Ergodic stochastic optimization algorithms for wireless communication and networking 2010,		2

29	Mobility & routing control in networks of robots 2010 ,		19
28	Ergodic Stochastic Optimization Algorithms for Wireless Communication and Networking. <i>IEEE Transactions on Signal Processing</i> , 2010 , 58, 6369-6386	4.8	86
27	Kalman Filtering in Wireless Sensor Networks. IEEE Control Systems, 2010, 30, 66-86	2.9	87
26	Optimal robust multihop routing for wireless networks of mobile micro autonomous systems 2010 ,		8
25	Separation Principles in Wireless Networking. IEEE Transactions on Information Theory, 2010, 56, 4488-	45 08	44
24	Stochastic soft backpressure algorithms for routing and scheduling in wireless ad-hoc networks 2009 ,		6
23	Cross-layer optimization of wireless fading ad-hoc networks 2009,		1
22	Cooperative Communications in Wireless Networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2009 , 2009,	3.2	3
21	Consensus in Ad Hoc WSNs With Noisy LinksPart I: Distributed Estimation of Deterministic Signals. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 350-364	4.8	416
20	Consensus in Ad Hoc WSNs With Noisy LinksPart II: Distributed Estimation and Smoothing of Random Signals. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 1650-1666	4.8	121
19	Decentralized Quantized Kalman Filtering With Scalable Communication Cost. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 3727-3741	4.8	107
18	2008,		1
17	Layer separability of wireless networks 2008,		5
16	Optimal layered architectures of wireless networks 2008,		1
15	. IEEE Transactions on Wireless Communications, 2008, 7, 4261-4272	9.6	29
14	Optimal FDMA over wireless fading mobile ad-hoc networks. <i>Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing</i> , 2008 ,	1.6	5
13	Distributed Kalman filtering based on quantized innovations. <i>Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,</i> 2008 ,	1.6	4
12	Distributed Iteratively Quantized Kalman Filtering for Wireless Sensor Networks. <i>Conference Record of the Asilomar Conference on Signals, Systems and Computers</i> , 2007 ,	0.3	1

11	Anytime Optimal Distributed Kalman Filtering and Smoothing 2007 ,		6	
10	Multi-source cooperation with full-diversity spectral-efficiency and controllable-complexity. <i>IEEE Journal on Selected Areas in Communications</i> , 2007 , 25, 415-425	14.2	20	
9	Achieving Wireline Random Access Throughput in Wireless Networking Via User Cooperation. <i>IEEE Transactions on Information Theory</i> , 2007 , 53, 732-758	2.8	7	
8	2007,		7	
7	Link-Adaptive Distributed Coding for Multisource Cooperation. <i>Eurasip Journal on Advances in Signal Processing</i> , 2007 , 2008,	1.9	5	
6	2007,		1	
5	Consensus-Based Distributed Parameter Estimation in Ad Hoc Wireless Sensor Networks with Noisy Links 2007 ,		9	
4	Multi-Source Cooperation with Full-Diversity Spectral-Efficiency and Controllable-Complexity 2006,		1	
3	CTH13-4: Link-Adaptive Distributed Coding for Multi-Source Cooperation. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		3	
2	SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using the Sign of Innovations. <i>IEEE Transactions on Signal Processing</i> , 2006 , 54, 4782-4795	4.8	219	
1	Distributed Estimation under Bandwidth and Energy Constraints149-184		1	