
Feng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9207092/publications.pdf Version: 2024-02-01

FENC CAO

#	Article	IF	CITATIONS
1	Resistance matching materials nanoarchitectonics for better performances in water evaporation-driven generators. Nanotechnology, 2022, 33, 195402.	2.6	1
2	Selfâ€Assembly of Graphene Oxide/Nanodiamond Microspheres with High Adsorption for Pb(II) Ions. ChemistrySelect, 2022, 7, .	1.5	2
3	Dual functions of three-dimensional hierarchical architecture on improving the rate capability and cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion battery. Ceramics International, 2022, 48, 9124-9133.	4.8	3
4	A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste. New Carbon Materials, 2021, 36, 34-48.	6.1	37
5	Boosting cycle stability of NCM811 cathode material via 2D Mg-Al-LDO nanosheet coating for lithium-ion battery. Journal of Alloys and Compounds, 2021, 867, 159079.	5.5	17
6	Cost-effective synthesis of hierarchical HZSM-5 with a high Si/TPA+ ratio for enhanced catalytic cracking of polyethylene. Journal of Solid State Chemistry, 2020, 291, 121643.	2.9	7
7	Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries. Synthetic Metals, 2020, 263, 116364.	3.9	6
8	Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Materials, 2020, 35, 121-130.	6.1	24
9	Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy, 2020, 70, 104502.	16.0	55
10	Mesoporogen-free synthesis of hierarchical HZSM-5 for LDPE catalytic cracking. CrystEngComm, 2020, 22, 3598-3607.	2.6	6
11	A CoMn2O3.5-RGO hybrid as an effective Fenton-like catalyst for the decomposition of various dyes. New Carbon Materials, 2019, 34, 539-545.	6.1	9
12	Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy, 2019, 57, 269-278.	16.0	134
13	Self-assembly of a graphene oxide/MnFe ₂ O ₄ motor by coupling shear force with capillarity for removal of toxic heavy metals. Journal of Materials Chemistry A, 2018, 6, 20861-20868.	10.3	35
14	Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries. Carbon, 2018, 139, 1085-1092.	10.3	106
15	Zeolitic imidazolate framework monoliths with high mesoporosity and effective adsorption of toluene from aqueous solution. New Journal of Chemistry, 2017, 41, 8031-8035.	2.8	4
16	Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 7445-7452.	10.3	140
17	Efficient synthesis of graphene/sulfur nanocomposites with high sulfur content and their application as cathodes for Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 16219-16224.	10.3	18
18	Nitrogen-doped porous "green carbon―derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery. Journal of Alloys and Compounds, 2016, 671, 17-23.	5.5	73

Feng Gao

#	Article	IF	CITATIONS
19	Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016, 190, 1134-1141.	5.2	217
20	Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochimica Acta, 2015, 155, 201-208.	5.2	159
21	Dense 3D Graphene Macroforms with Nanotuned Pore Sizes for High Performance Supercapacitor Electrodes. Journal of Physical Chemistry C, 2015, 119, 24373-24380.	3.1	32
22	In situ fabrication of Mn 3 O 4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Applied Catalysis B: Environmental, 2015, 162, 268-274.	20.2	159
23	Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Applied Catalysis B: Environmental, 2014, 147, 958-964.	20.2	127
24	Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon, 2014, 66, 485-492.	10.3	189
25	Easy synthesis of MnO-graphene hybrids for high-performance lithium storage. New Carbon Materials, 2014, 29, 316-321.	6.1	15
26	A green strategy for the synthesis of graphene supported Mn 3 O 4 nanocomposites from graphitized coal and their supercapacitor application. Carbon, 2014, 80, 640-650.	10.3	121