Thierry VandenDriessche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206987/publications.pdf

Version: 2024-02-01

35 papers 1,268 citations

17 h-index 33 g-index

38 all docs 38 docs citations

38 times ranked 2083 citing authors

#	Article	IF	CITATIONS
1	Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Molecular Therapy, 2022, 30, 75-91.	3.7	9
2	Universal allogeneic CAR TÂcells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Molecular Therapy, 2022, 30, 3155-3175.	3.7	21
3	Gene Therapy For Hemophilia B Using CB 2679d-GT: A Novel Factor IX Variant With Higher Potency Than Factor IX Padua. Blood, 2021, 137, 2902-2906.	0.6	8
4	Dose-Dependent Microdystrophin Expression Enhancement in Cardiac Muscle by a Cardiac-Specific Regulatory Element. Human Gene Therapy, 2021, 32, 1138-1146.	1.4	5
5	The RNA World: The Best of Times, the Worst of Times. Human Gene Therapy, 2021, 32, 975-977.	1.4	O
6	Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Therapy, 2020, 27, 170-179.	2.3	8
7	Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nature Communications, 2020, $11,5432$.	5. 8	105
8	Towards a global multidisciplinary consensus framework on haemophilia gene therapy: Report of the 2nd World Federation of Haemophilia Gene Therapy Round Table. Haemophilia, 2020, 26, 443-449.	1.0	15
9	Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. Molecular Therapy - Nucleic Acids, 2020, 19, 1309-1329.	2.3	9
10	Immunology of Gene and Cell Therapy. Molecular Therapy, 2020, 28, 691-692.	3.7	3
11	Genetic and Epigenetic Modification of Rat Liver Progenitor Cells via HNF4α Transduction and 5' Azacytidine Treatment: An Integrated miRNA and mRNA Expression Profile Analysis. Genes, 2020, 11, 486.	1.0	2
12	A Calsequestrin Cis-Regulatory Motif Coupled to a Cardiac Troponin T Promoter Improves Cardiac Adeno-Associated Virus Serotype 9 Transduction Specificity. Human Gene Therapy, 2018, 29, 927-937.	1.4	10
13	Hyperactive Factor IX Padua: A Game-Changer for Hemophilia Gene Therapy. Molecular Therapy, 2018, 26, 14-16.	3.7	10
14	Efficient InÂVivo Liver-Directed Gene Editing Using CRISPR/Cas9. Molecular Therapy, 2018, 26, 1241-1254.	3.7	52
15	Getting Into the Rhythm With CRISPR. Circulation Research, 2018, 123, 928-930.	2.0	O
16	Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Research, 2018, 46, 8275-8298.	6.5	78
17	AAV Capsid Engineering: Zooming in on the Target. Human Gene Therapy, 2017, 28, 373-374.	1.4	1
18	A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Molecular Therapy, 2017, 25, 1815-1830.	3.7	52

#	Article	IF	Citations
19	AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Human Molecular Genetics, 2017, 26, 1353-1364.	1.4	26
20	Preclinical and clinical advances in transposon-based gene therapy. Bioscience Reports, 2017, 37, .	1.1	68
21	Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Human Gene Therapy, 2017, 28, 1087-1104.	1.4	56
22	Hemophilia Gene Therapy: Ready for Prime Time?. Human Gene Therapy, 2017, 28, 1013-1023.	1.4	25
23	<i>piggyBac</i> transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Research, 2016, 44, 744-760.	6.5	25
24	CRISPR/Cas9 Flexes Its Muscles: In Vivo Somatic Gene Editing for Muscular Dystrophy. Molecular Therapy, 2016, 24, 414-416.	3.7	7
25	Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nature Protocols, 2015, 10, 941-958.	5.5	98
26	Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Science Translational Medicine, 2015, 7, 277ra28.	5.8	118
27	Moving Forward Toward a Cure for Hemophilia B. Molecular Therapy, 2015, 23, 809-811.	3.7	5
28	Hitting the Target Without Pulling the Trigger. Molecular Therapy, 2015, 23, 4-6.	3.7	3
29	Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovascular Research, 2015, 108, 4-20.	1.8	129
30	Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy. Molecular Therapy, 2015, 23, 43-52.	3.7	36
31	Hyperactive PiggyBac Transposons for Sustained and Robust Liver-targeted Gene Therapy. Molecular Therapy, 2014, 22, 1614-1624.	3.7	48
32	Liver-Specific Transcriptional Modules Identified by Genome-Wide In Silico Analysis Enable Efficient Gene Therapy in Mice and Non-Human Primates. Molecular Therapy, 2014, 22, 1605-1613.	3.7	71
33	Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood, 2014, 123, 3195-3199.	0.6	73
34	1: INTRODUCTION. ICP Textbooks in Biomolecular Sciences, 2014, , 3-6.	0.1	0
35	Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood, 2012, 120, 4517-4520.	0.6	84