
Fernanda M F Roleira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Current Medicinal Chemistry, 2005, 12, 887-916.	2.4	828
2	Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 2015, 183, 235-258.	8.2	340
3	Lipophilic Caffeic and Ferulic Acid Derivatives Presenting Cytotoxicity against Human Breast Cancer Cells. Chemical Research in Toxicology, 2011, 24, 763-774.	3.3	115
4	Lipophilic phenolic antioxidants: Correlation between antioxidant profile, partition coefficients and redox properties. Bioorganic and Medicinal Chemistry, 2010, 18, 5816-5825.	3.0	94
5	Structureâ~'Activity Relationships of New A,D-Ring Modified Steroids as Aromatase Inhibitors:Â Design, Synthesis, and Biological Activity Evaluation. Journal of Medicinal Chemistry, 2005, 48, 6379-6385.	6.4	73
6	New Structure–Activity Relationships of A- and D-Ring Modified Steroidal Aromatase Inhibitors: Design, Synthesis, and Biochemical Evaluation. Journal of Medicinal Chemistry, 2012, 55, 3992-4002.	6.4	60
7	Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. European Journal of Medicinal Chemistry, 2020, 206, 112526.	5.5	45
8	Epoxide containing molecules: A good or a bad drug design approach. European Journal of Medicinal Chemistry, 2020, 201, 112327.	5.5	43
9	Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. Studies in Natural Products Chemistry, 2018, , 115-156.	1.8	35
10	Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors. Steroids, 2008, 73, 1409-1415.	1.8	33
11	Exemestane metabolites: Synthesis, stereochemical elucidation, biochemical activity and anti-proliferative effects in a hormone-dependent breast cancer cell line. European Journal of Medicinal Chemistry, 2014, 87, 336-345.	5.5	33
12	Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: Aromatase inhibition and autophagy. Journal of Steroid Biochemistry and Molecular Biology, 2013, 135, 51-59.	2.5	32
13	Hormone-dependent breast cancer: Targeting autophagy and PI3K overcomes Exemestane-acquired resistance. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 51-61.	2.5	29
14	New phenolic cinnamic acid derivatives as selective COX-2 inhibitors. Design, synthesis, biological activity and structure-activity relationships. Bioorganic Chemistry, 2019, 91, 103179.	4.1	29
15	Design, synthesis and biochemical studies of new 7α-allylandrostanes as aromatase inhibitors. Steroids, 2013, 78, 662-669.	1.8	25
16	C-6α- vs C-7α-Substituted Steroidal Aromatase Inhibitors: Which Is Better? Synthesis, Biochemical Evaluation, Docking Studies, and Structure–Activity Relationships. Journal of Medicinal Chemistry, 2019, 62, 3636-3657.	6.4	25
17	Anti-tumor efficacy of new 7α-substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 218-228.	2.5	24
18	miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. European Journal of Pharmaceutical Sciences, 2018, 123, 28-42.	4.0	24

#	Article	IF	CITATIONS
19	Exemestane metabolites suppress growth of estrogen receptor-positive breast cancer cells by inducing apoptosis and autophagy: A comparative study with Exemestane. International Journal of Biochemistry and Cell Biology, 2015, 69, 183-195.	2.8	23
20	Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1426-1436.	4.9	22
21	Combined dual effect of modulation of human neutrophils' oxidative burst and inhibition of colon cancer cells proliferation by hydroxycinnamic acid derivatives. Bioorganic and Medicinal Chemistry, 2016, 24, 3556-3564.	3.0	22
22	Characterization of polymeric nanoparticles for intravenous delivery: Focus on stability. Colloids and Surfaces B: Biointerfaces, 2017, 150, 326-333.	5.0	20
23	X-ray and deuterium labeling studies on the abnormal ring cleavages of a 5β-epoxide precursor of formestane. Steroids, 2002, 67, 311-319.	1.8	18
24	New steroidal aromatase inhibitors: Suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death. BMC Cell Biology, 2008, 9, 41.	3.0	17
25	Molecular mechanisms of aromatase inhibition by new A, D-ring modified steroids. Biological Chemistry, 2008, 389, 1183-1191.	2.5	16
26	Development of a new gas chromatography–mass spectrometry (GC–MS) methodology for the evaluation of 5α-reductase activity. Talanta, 2013, 107, 154-161.	5.5	16
27	Effects of new C6-substituted steroidal aromatase inhibitors in hormone-sensitive breast cancer cells: Cell death mechanisms and modulation of estrogen and androgen receptors. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105486.	2.5	15
28	Simple Coumarins: Privileged Scaffolds in Medicinal Chemistry. , 2012, , 23-85.		14
29	Exploring new chemical functionalities to improve aromatase inhibition of steroids. Bioorganic and Medicinal Chemistry, 2016, 24, 2823-2831.	3.0	13
30	New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line. Biochimie, 2013, 95, 2097-2106.	2.6	11
31	Design, synthesis, and antitumor activity evaluation of steroidal oximes. Bioorganic and Medicinal Chemistry, 2021, 46, 116360.	3.0	11
32	Activation of hydrocinnamic acids with pentafluorophenol versus pentafluorothiophenol: Reactivity towards hexylamine. Journal of Fluorine Chemistry, 2009, 130, 169-174.	1.7	10
33	Isocratic HPLC Separation of Scopoletin and <i>Cis/Trans</i> Isomers of Ferulic Acid as Well as Isoscopoletin and <i>Cis/Trans</i> Isomers of Isoferulic Acid. Journal of Liquid Chromatography and Related Technologies, 1991, 14, 2307-2316.	1.0	4
34	Simultaneous Isocratic HPLC Separation of the Diastereoisomers of Caffeic, Ferulic, and Isoferulic Acids and Related Coumarins. Journal of Liquid Chromatography and Related Technologies, 1993, 16, 149-160.	1.0	4
35	Synthesis and Radiosynthesis of 17α-[p-(Iodophenylethynyl)]estra-3,17β-diols. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2003, 58, 799-804.	0.7	4
36	Getting the Classroom Closer to Research Work: Undergraduate Students Prepare <i>N</i> -Hexylcinnamamide. Journal of Chemical Education, 2020, 97, 2366-2369.	2.3	4

#	Article	IF	CITATIONS
37	Oxymestane, a cytostatic steroid derivative of exemestane with greater antitumor activity in non-estrogen-dependent cell lines. Journal of Steroid Biochemistry and Molecular Biology, 2021, 212, 105950.	2.5	4
38	Insights into the Synthesis of SteroidalA-Ring Olefins. Helvetica Chimica Acta, 2014, 97, 39-46.	1.6	3
39	The health components of spices and herbs: The medicinal chemistry point of view. , 2021, , 35-92.		3
40	Lithocholic Acid Derivative as a Model for Artificial Receptors: A Raman Study. Letters in Drug Design and Discovery, 2010, 7, 610-617.	0.7	3
41	5α-Androst-3-en-17-one. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o189-o191.	0.2	2
42	5α-Androst-3-en-17-one oxime. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o508-o510.	0.4	2
43	Antioxidants and Stroke: Success and Pitfalls. , 2012, , 117-143.		2
44	Molecular clefts of Rebek revisited: potential application as drug carriers for the antiviral acyclovir. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 203-208.	1.6	2
45	17-Oxo-5α-androstane-3α,4β-diyl diacetate and 17-oxo-5β-androstane-3α,4β-diyl diacetate. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o131-o133.	0.4	1
46	17-Oxo-5β-hydroxyandrostan-3β-yl acetate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1144-o1146.	0.2	1
47	A novel GC-MS methodology to evaluate aromatase activity in human placental microsomes: a comparative study with the standard radiometric assay. Analytical and Bioanalytical Chemistry, 2019, 411, 7005-7013.	3.7	1
48	3α,4α-Epoxy-5α-androstan-17β-yl acetate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o814-o814.	0.2	1
49	3α,4β-Dihydroxy-5β-androstan-17-one. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o21-o23.	0.2	0
50	3β,7α,12α-Triformyloxy-24-nor-5β-chol-22-ene. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, 082-083.	0.4	0
51	Pentafluorophenyl 3-phenylprop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o193-o194.	0.2	Ο
52	3α,7α,12α-Triformyloxy-24-nor-5β-chol-22-ene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1856-o1858.	0.2	0
53	3,17-Dioxoandrost-4-en-4-yl acetate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o330-o331.	0.4	0
54	6-Methylideneandrost-4-ene-3,17-dione. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1263-o1263.	0.2	0

#	Article	IF	CITATIONS
55	N-Hexyl-3-(4-hydroxy-3,5-dimethoxyphenyl)propanamide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1603-o1604.	0.2	Ο
56	5α-Androst-3-en-17β-yl acetate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o184-o184.	0.2	0
57	Development and Characterization of a Novel Mixed Polymeric Micelle as a Potential Therapeutic Strategy for Osteosarcoma. Proceedings (mdpi), 2020, 78, .	0.2	0
58	Synthesis and Characterization of a Novel Nanomicellar System Pluronic-PEI Suitable for Gene and Drug Co-Delivery in Cancer Therapy. Proceedings (mdpi), 2021, 78, 36.	0.2	0