Nicholas P Restifo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206371/publications.pdf Version: 2024-02-01

		614	538
308	74,491	124	265
papers	citations	h-index	g-index
319	319	319	49434
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cancer immunotherapy: moving beyond current vaccines. Nature Medicine, 2004, 10, 909-915.	15.2	2,708
2	Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes. Science, 2002, 298, 850-854.	6.0	2,598
3	Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science, 2006, 314, 126-129.	6.0	2,352
4	Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348, 62-68.	6.0	1,911
5	Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 2011, 17, 4550-4557.	3.2	1,823
6	Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Medicine, 1998, 4, 321-327.	15.2	1,693
7	A human memory T cell subset with stem cell–like properties. Nature Medicine, 2011, 17, 1290-1297.	15.2	1,547
8	Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8372-8377.	3.3	1,482
9	Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients With Refractory Metastatic Melanoma. Journal of Clinical Oncology, 2005, 23, 2346-2357.	0.8	1,452
10	Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. Journal of Clinical Oncology, 2011, 29, 917-924.	0.8	1,427
11	Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology, 2012, 12, 269-281.	10.6	1,412
12	Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 2008, 8, 299-308.	12.8	1,404
13	Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009, 114, 535-546.	0.6	1,280
14	Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 2008, 26, 5233-5239.	0.8	1,210
15	Autoimmunity Correlates With Tumor Regression in Patients With Metastatic Melanoma Treated With Anti–Cytotoxic T-Lymphocyte Antigen-4. Journal of Clinical Oncology, 2005, 23, 6043-6053.	0.8	989
16	Cancer Regression and Neurological Toxicity Following Anti-MAGE-A3 TCR Gene Therapy. Journal of Immunotherapy, 2013, 36, 133-151.	1.2	953
17	Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. Journal of Experimental Medicine, 2005, 202, 907-912.	4.2	951
18	Natural selection of tumor variants in the generation of "tumor escape―phenotypes. Nature Immunology, 2002, 3, 999-1005.	7.0	911

#	Article	IF	CITATIONS
19	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	10.6	879
20	Tumor Regression and Autoimmunity after Reversal of a Functionally Tolerant State of Self-reactive CD8+ T Cells. Journal of Experimental Medicine, 2003, 198, 569-580.	4.2	865
21	T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis. Molecular Therapy, 2011, 19, 620-626.	3.7	857
22	Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Medicine, 2009, 15, 808-813.	15.2	839
23	Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. Journal of Clinical Investigation, 2005, 115, 1616-1626.	3.9	815
24	Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9571-9576.	3.3	810
25	Adoptive immunotherapy for cancer: building on success. Nature Reviews Immunology, 2006, 6, 383-393.	10.6	801
26	Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008, 112, 362-373.	0.6	719
27	Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. Journal of Clinical Investigation, 2013, 123, 4479-4488.	3.9	719
28	Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. Journal of Experimental Medicine, 2010, 207, 637-650.	4.2	715
29	Human memory T cells: generation, compartmentalization and homeostasis. Nature Reviews Immunology, 2014, 14, 24-35.	10.6	699
30	T Helper 17 Cells Promote Cytotoxic T Cell Activation in Tumor Immunity. Immunity, 2009, 31, 787-798.	6.6	679
31	A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1–Reactive T-cell Receptor: Long-term Follow-up and Correlates with Response. Clinical Cancer Research, 2015, 21, 1019-1027.	3.2	677
32	Identification of essential genes for cancer immunotherapy. Nature, 2017, 548, 537-542.	13.7	668
33	CD8+ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells. Journal of Immunology, 2005, 174, 2591-2601.	0.4	662
34	Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. Journal of Experimental Medicine, 2005, 201, 139-148.	4.2	636
35	Antiangiogenic Agents Can Increase Lymphocyte Infiltration into Tumor and Enhance the Effectiveness of Adoptive Immunotherapy of Cancer. Cancer Research, 2010, 70, 6171-6180.	0.4	573
36	Predominant Role for Directly Transfected Dendritic Cells in Antigen Presentation to CD8+ T Cells after Gene Gun Immunization. Journal of Experimental Medicine, 1998, 188, 1075-1082.	4.2	539

#	Article	IF	CITATIONS
37	TH17 cells in tumour immunity and immunotherapy. Nature Reviews Immunology, 2010, 10, 248-256.	10.6	531
38	Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells. Journal of Clinical Oncology, 2015, 33, 1543-1550.	0.8	513
39	IL-15 enhances thein vivoantitumor activity of tumor-reactive CD8+T Cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1969-1974.	3.3	499
40	Paths to stemness: building the ultimate antitumour T cell. Nature Reviews Cancer, 2012, 12, 671-684.	12.8	487
41	lonic immune suppression within the tumour microenvironment limits T cell effector function. Nature, 2016, 537, 539-543.	13.7	479
42	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	0.6	474
43	Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. Journal of Clinical Investigation, 2007, 117, 2197-2204.	3.9	456
44	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	13.5	445
45	gp100/pmel 17 Is a Murine Tumor Rejection Antigen: Induction of "Self―reactive, Tumoricidal T Cells Using High-affinity, Altered Peptide Ligand. Journal of Experimental Medicine, 1998, 188, 277-286.	4.2	437
46	CD8 + Tâ€cell memory in tumor immunology and immunotherapy. Immunological Reviews, 2006, 211, 214-224.	2.8	434
47	Tumor Progression Can Occur despite the Induction of Very High Levels of Self/Tumor Antigen-Specific CD8+ T Cells in Patients with Melanoma. Journal of Immunology, 2005, 175, 6169-6176.	0.4	428
48	Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends in Immunology, 2005, 26, 111-117.	2.9	410
49	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
50	Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature. Immunity, 2011, 35, 972-985.	6.6	392
51	Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. Journal of Experimental Medicine, 2010, 207, 651-667.	4.2	389
52	IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood, 2008, 111, 5326-5333.	0.6	380
53	Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. Cell Metabolism, 2017, 26, 94-109.	7.2	374
54	T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science, 2019, 363, .	6.0	355

#	Article	IF	CITATIONS
55	Acquired resistance to immunotherapy and future challenges. Nature Reviews Cancer, 2016, 16, 121-126.	12.8	353
56	Adoptively transferred effector cells derived from naÃ ⁻ ve rather than central memory CD8 ⁺ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17469-17474.	3.3	348
57	Epigenetic control of CD8+ T cell differentiation. Nature Reviews Immunology, 2018, 18, 340-356.	10.6	334
58	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	13.7	332
59	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520, 558-562.	13.7	323
60	Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. Journal of Experimental Medicine, 2013, 210, 1125-1135.	4.2	321
61	Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go?. Nature Clinical Practice Oncology, 2006, 3, 668-681.	4.3	318
62	Cancer therapy using a self-replicating RNA vaccine. Nature Medicine, 1999, 5, 823-827.	15.2	311
63	Tumor-Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma. Clinical Cancer Research, 2015, 21, 2278-2288.	3.2	310
64	DNA and RNA-based vaccines: principles, progress and prospects. Vaccine, 1999, 18, 765-777.	1.7	308
65	Cellular Constituents of Immune Escape within the Tumor Microenvironment. Cancer Research, 2012, 72, 3125-3130.	0.4	308
66	Elucidating the Autoimmune and Antitumor Effector Mechanisms of a Treatment Based on Cytotoxic T Lymphocyte Antigen-4 Blockade in Combination with a B16 Melanoma Vaccine. Journal of Experimental Medicine, 2001, 194, 481-490.	4.2	307
67	Essentials of Th17 cell commitment and plasticity. Blood, 2013, 121, 2402-2414.	0.6	306
68	Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 2010, 116, 3875-3886.	0.6	301
69	B16 as a Mouse Model for Human Melanoma. Current Protocols in Immunology, 2000, 39, Unit 20.1.	3.6	298
70	Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine, 2016, 22, 26-36.	15.2	296
71	Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, 2389-2397.	0.8	293
72	Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76.	7.2	291

#	Article	IF	CITATIONS
73	Superior T memory stem cell persistence supports long-lived T cell memory. Journal of Clinical Investigation, 2013, 123, 594-9.	3.9	287
74	Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics. Cancer Research, 2015, 75, 296-305.	0.4	283
75	IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. Journal of Clinical Investigation, 2011, 121, 4746-4757.	3.9	283
76	MicroRNA-155 Is Required for Effector CD8+ T Cell Responses to Virus Infection and Cancer. Immunity, 2013, 38, 742-753.	6.6	278
77	Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood, 2011, 117, 808-814.	0.6	272
78	CD8+ Enriched "Young―Tumor Infiltrating Lymphocytes Can Mediate Regression of Metastatic Melanoma. Clinical Cancer Research, 2010, 16, 6122-6131.	3.2	269
79	Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nature Medicine, 2003, 9, 33-39.	15.2	260
80	High-Efficiency Transfection of Primary Human and Mouse T Lymphocytes Using RNA Electroporation. Molecular Therapy, 2006, 13, 151-159.	3.7	260
81	Therapeutic cancer vaccines: are we there yet?. Immunological Reviews, 2011, 239, 27-44.	2.8	249
82	Determinants of Successful CD8+ T-Cell Adoptive Immunotherapy for Large Established Tumors in Mice. Clinical Cancer Research, 2011, 17, 5343-5352.	3.2	247
83	Local Delivery of Interleukin-12 Using T Cells Targeting VEGF Receptor-2 Eradicates Multiple Vascularized Tumors in Mice. Clinical Cancer Research, 2012, 18, 1672-1683.	3.2	244
84	Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Medicine, 2000, 6, 493-495.	15.2	238
85	Sorting Through Subsets. Journal of Immunotherapy, 2012, 35, 651-660.	1.2	237
86	Increased Intensity Lymphodepletion Enhances Tumor Treatment Efficacy of Adoptively Transferred Tumor-specific T Cells. Journal of Immunotherapy, 2010, 33, 1-7.	1.2	236
87	Improving Adoptive T Cell Therapy by Targeting and Controlling IL-12 Expression to the Tumor Environment. Molecular Therapy, 2011, 19, 751-759.	3.7	233
88	Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor–transduced T Cells Targeting EGFRvIII in Patients With Glioblastoma. Journal of Immunotherapy, 2019, 42, 126-135.	1.2	231
89	Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends in Immunology, 2009, 30, 592-602.	2.9	229
90	Tumor-Specific CD8+ T Cells Expressing Interleukin-12 Eradicate Established Cancers in Lymphodepleted Hosts. Cancer Research, 2010, 70, 6725-6734.	0.4	227

#	Article	IF	CITATIONS
91	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	7.0	221
92	High Efficiency TCR Gene Transfer into Primary Human Lymphocytes Affords Avid Recognition of Melanoma Tumor Antigen Glycoprotein 100 and Does Not Alter the Recognition of Autologous Melanoma Antigens. Journal of Immunology, 2003, 171, 3287-3295.	0.4	219
93	Treatment of Metastatic Melanoma Using Interleukin-2 Alone or in Conjunction with Vaccines. Clinical Cancer Research, 2008, 14, 5610-5618.	3.2	207
94	Molecular Characterization of Defective Antigen Processing in Human Prostate Cancer. Journal of the National Cancer Institute, 1995, 87, 280-285.	3.0	205
95	T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6973-6978.	3.3	203
96	Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell, 2016, 166, 1117-1131.e14.	13.5	203
97	Adoptive immunotherapy of cancer using CD4+ T cells. Current Opinion in Immunology, 2009, 21, 200-208.	2.4	202
98	CD4+CD25+ T Regulatory Cells, Immunotherapy of Cancer, and Interleukin-2. Journal of Immunotherapy, 2005, 28, 120-128.	1.2	199
99	Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. Journal of Clinical Investigation, 2010, 120, 3953-3968.	3.9	199
100	Type 17 CD8+ T cells display enhanced antitumor immunity. Blood, 2009, 114, 596-599.	0.6	196
101	Randomized Selection Design Trial Evaluating CD8 ⁺ -Enriched Versus Unselected Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy for Patients With Melanoma. Journal of Clinical Oncology, 2013, 31, 2152-2159.	0.8	196
102	Agonist Anti-GITR Antibody Enhances Vaccine-Induced CD8+ T-Cell Responses and Tumor Immunity. Cancer Research, 2006, 66, 4904-4912.	0.4	195
103	Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. Journal of Clinical Investigation, 2019, 129, 1109-1114.	3.9	193
104	Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy. Journal of Clinical Investigation, 2015, 126, 318-334.	3.9	193
105	Reassessing target antigens for adoptive T-cell therapy. Nature Biotechnology, 2013, 31, 999-1008.	9.4	181
106	Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nature Protocols, 2013, 8, 33-42.	5.5	181
107	Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8+ T cells. Journal of Clinical Investigation, 2007, 117, 492-501.	3.9	181
108	Identification of T-cell Receptors Targeting KRAS-Mutated Human Tumors. Cancer Immunology Research, 2016, 4, 204-214.	1.6	175

#	Article	IF	CITATIONS
109	Lineage relationship of effector and memory T cells. Current Opinion in Immunology, 2013, 25, 556-563.	2.4	173
110	Developing neoantigen-targeted T cell–based treatments for solid tumors. Nature Medicine, 2019, 25, 1488-1499.	15.2	173
111	Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nature Immunology, 2011, 12, 1230-1237.	7.0	165
112	Cutting Edge: CD4+T Cell Control of CD8+T Cell Reactivity to a Model Tumor Antigen. Journal of Immunology, 2000, 164, 562-565.	0.4	161
113	Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1. Genome Research, 2011, 21, 1650-1658.	2.4	160
114	The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell, 2019, 178, 1088-1101.e15.	13.5	160
115	Self-Tolerance to the Murine Homologue of a Tyrosinase-Derived Melanoma Antigen. Journal of Experimental Medicine, 2000, 191, 1221-1232.	4.2	154
116	A Novel Chimeric Antigen Receptor Against Prostate Stem Cell Antigen Mediates Tumor Destruction in a Humanized Mouse Model of Pancreatic Cancer. Human Gene Therapy, 2014, 25, 1003-1012.	1.4	152
117	A TCR Targeting the HLA-A*0201–Restricted Epitope of MAGE-A3 Recognizes Multiple Epitopes of the MAGE-A Antigen Superfamily in Several Types of Cancer. Journal of Immunology, 2011, 186, 685-696.	0.4	150
118	Immune Evasion by Murine Melanoma Mediated through CC Chemokine Receptor-10. Journal of Experimental Medicine, 2003, 198, 1337-1347.	4.2	148
119	Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. Journal of Experimental Medicine, 2015, 212, 2095-2113.	4.2	147
120	Enhancing Efficacy of Recombinant Anticancer Vaccines With Prime/Boost Regimens That Use Two Different Vectors. Journal of the National Cancer Institute, 1997, 89, 1595-1601.	3.0	145
121	Wnt/β-Catenin Signaling in T-Cell Immunity and Cancer Immunotherapy. Clinical Cancer Research, 2010, 16, 4695-4701.	3.2	145
122	Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight, 2017, 2, .	2.3	142
123	Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Current Opinion in Immunology, 2000, 12, 597-603.	2.4	138
124	De novo Induction of a Cancer/Testis Antigen by 5-Aza-2′-Deoxycytidine Augments Adoptive Immunotherapy in a Murine Tumor Model. Cancer Research, 2006, 66, 1105-1113.	0.4	133
125	Identification of CD4+ T Cell Epitopes from NY-ESO-1 Presented by HLA-DR Molecules. Journal of Immunology, 2000, 165, 1153-1159.	0.4	130
126	Identification of a MHC Class II-Restricted Human gp100 Epitope Using DR4-IE Transgenic Mice. Journal of Immunology, 2000, 164, 3535-3542.	0.4	124

#	Article	IF	CITATIONS
127	Bcl-2 Overexpression Enhances Tumor-Specific T-Cell Survival. Cancer Research, 2005, 65, 2001-2008.	0.4	122
128	Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nature Medicine, 2010, 16, 339-345.	15.2	122
129	Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells. Journal of Experimental Medicine, 2013, 210, 1961-1976.	4.2	120
130	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. OncoImmunology, 2015, 4, e998538.	2.1	119
131	Immunization of Patients with Metastatic Melanoma Using Both Class I- and Class II-Restricted Peptides from Melanoma-Associated Antigens. Journal of Immunotherapy, 2003, 26, 349-356.	1.2	118
132	Dendritic Cells Strongly Boost the Antitumor Activity of Adoptively Transferred T Cells In vivo. Cancer Research, 2004, 64, 6783-6790.	0.4	116
133	Molecular Mechanisms Used by Tumors to Escape Immune Recognition. Journal of Immunotherapy, 1993, 14, 182-190.	1.2	115
134	Toll-like Receptors in Tumor Immunotherapy. Clinical Cancer Research, 2007, 13, 5280-5289.	3.2	114
135	Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8061-8066.	3.3	114
136	The interplay of effector and regulatory T cells in cancer. Current Opinion in Immunology, 2015, 33, 101-111.	2.4	114
137	BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nature Immunology, 2017, 18, 813-823.	7.0	113
138	The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. Nature Immunology, 2019, 20, 337-349.	7.0	113
139	Vaccine-Stimulated, Adoptively Transferred CD8+ T Cells Traffic Indiscriminately and Ubiquitously while Mediating Specific Tumor Destruction. Journal of Immunology, 2004, 173, 7209-7216.	0.4	110
140	Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight, 2018, 3, .	2.3	110
141	Interleukin-2-Dependent Mechanisms of Tolerance and Immunity In Vivo. Journal of Immunology, 2006, 176, 5255-5266.	0.4	109
142	T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. Journal of Clinical Investigation, 2019, 129, 1551-1565.	3.9	108
143	Inability to Immunize Patients with Metastatic Melanoma Using Plasmid DNA Encoding the gp100 Melanoma-Melanocyte Antigen. Human Gene Therapy, 2003, 14, 709-714.	1.4	105
144	Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance. Journal of Clinical Investigation, 2004, 114, 551-559.	3.9	104

#	Article	IF	CITATIONS
145	Uncoupling Tâ€cell expansion from effector differentiation in cellâ€based immunotherapy. Immunological Reviews, 2014, 257, 264-276.	2.8	102
146	Nutrient Competition: A New Axis of Tumor Immunosuppression. Cell, 2015, 162, 1206-1208.	13.5	102
147	Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Current Opinion in Immunology, 2005, 17, 195-201.	2.4	101
148	Increased Immunogenicity of an Anchor-Modified Tumor-Associated Antigen Is Due to the Enhanced Stability of the Peptide/MHC Complex: Implications for Vaccine Design. Journal of Immunology, 2005, 174, 4812-4820.	0.4	99
149	miR-155 augments CD8 ⁺ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic l³ _c cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 476-481.	3.3	99
150	Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cellular and Molecular Immunology, 2016, 13, 502-513.	4.8	99
151	Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a Murine tumor model. Vaccine, 1997, 15, 387-394.	1.7	98
152	Tumorâ€specific <scp>CD</scp> 4 ⁺ <scp>T</scp> cells maintain effector and memory tumorâ€specific <scp>CD</scp> 8 ⁺ <scp>T</scp> cells. European Journal of Immunology, 2014, 44, 69-79.	1.6	98
153	Cloning and Characterization of the Genes Encoding the Murine Homoloties of the Human Melanoma Antigens MARTI and gp100. Journal of Immunotherapy, 1997, 20, 15-16.	1.2	97
154	Immune Selection of Hot-Spot β2 <i>-Microglobulin</i> Gene Mutations, HLA-A2 Allospecificity Loss, and Antigen-Processing Machinery Component Down-Regulation in Melanoma Cells Derived from Recurrent Metastases following Immunotherapy. Journal of Immunology, 2005, 174, 1462-1471.	0.4	96
155	Multi-phenotype CRISPR-Cas9 Screen Identifies p38 Kinase as a Target for Adoptive Immunotherapies. Cancer Cell, 2020, 37, 818-833.e9.	7.7	96
156	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	3.2	95
157	An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature, 2021, 597, 544-548.	13.7	94
158	Structures of MART-126/27–35 Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition. Journal of Molecular Biology, 2007, 372, 1123-1136.	2.0	90
159	Simultaneous Targeting of Tumor Antigens and the Tumor Vasculature Using T Lymphocyte Transfer Synergize to Induce Regression of Established Tumors in Mice. Cancer Research, 2013, 73, 3371-3380.	0.4	89
160	Dendritic Cells Infected with PoxvIn Vitro iruses Encoding MART-1/ Melan A Sensitize T Lymphocytes In Vitro. Journal of Immunotherapy, 1997, 20, 276-286.	1.2	88
161	Ocular and Systemic Autoimmunity after Successful Tumor-Infiltrating Lymphocyte Immunotherapy for Recurrent, Metastatic Melanoma. Ophthalmology, 2009, 116, 981-989.e1.	2.5	88
162	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	3.7	88

#	Article	IF	CITATIONS
163	Extrathymic Generation of Tumor-Specific T Cells from Genetically Engineered Human Hematopoietic Stem Cells via Notch Signaling. Cancer Research, 2007, 67, 2425-2429.	0.4	87
164	Metabolic reprograming of anti-tumor immunity. Current Opinion in Immunology, 2017, 46, 14-22.	2.4	85
165	STING agonist promotes CAR T cell trafficking and persistence in breast cancer. Journal of Experimental Medicine, 2021, 218, .	4.2	84
166	Intensity of the Vaccine-Elicited Immune Response Determines Tumor Clearance. Journal of Immunology, 2002, 168, 338-347.	0.4	83
167	Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clinical Cancer Research, 2003, 9, 2973-80.	3.2	82
168	Interleukin-7-Dependent Expansion and Persistence of Melanoma-Specific T Cells in Lymphodepleted Mice Lead to Tumor Regression and Editing. Cancer Research, 2005, 65, 10569-10577.	0.4	81
169	Immunological and Antitumor Effects of IL-23 as a Cancer Vaccine Adjuvant. Journal of Immunology, 2006, 176, 5213-5222.	0.4	81
170	Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Molecular Cell, 2019, 73, 1162-1173.e5.	4.5	81
171	Genetic Engineering of Murine CD8+ and CD4+ T Cells for Preclinical Adoptive Immunotherapy Studies. Journal of Immunotherapy, 2011, 34, 343-352.	1.2	80
172	Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunology, Immunotherapy, 2013, 62, 727-736.	2.0	80
173	Induction of CD4+ T cell–dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. Journal of Clinical Investigation, 2002, 109, 1463-1470.	3.9	77
174	Both CD4 and CD8 T Cells Mediate Equally Effective In Vivo Tumor Treatment When Engineered with a Highly Avid TCR Targeting Tyrosinase. Journal of Immunology, 2010, 184, 5988-5998.	0.4	75
175	A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Scientific Reports, 2018, 8, 2743.	1.6	75
176	Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nature Medicine, 2020, 26, 781-791.	15.2	75
177	Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunology, Immunotherapy, 2011, 60, 671-683.	2.0	74
178	Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in anIn vitro melanoma model. , 1999, 80, 781-790.		73
179	Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity, 2021, 54, 116-131.e10.	6.6	72
180	Antigen Experienced T Cells from Peripheral Blood Recognize p53 Neoantigens. Clinical Cancer Research, 2020, 26, 1267-1276.	3.2	69

#	Article	IF	CITATIONS
181	Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine, 2004, 22, 1537-1544.	1.7	67
182	Do CD4+CD25+ Immunoregulatory T Cells Hinder Tumor Immunotherapy?. Journal of Immunotherapy, 2002, 25, 202-206.	1.2	67
183	Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance. Journal of Clinical Investigation, 2004, 114, 551-559.	3.9	66
184	Cancer vaccines: progress reveals new complexities. Journal of Clinical Investigation, 2002, 110, 289-294.	3.9	65
185	Preclinical Evaluation of Chimeric Antigen Receptors Targeting CD70-Expressing Cancers. Clinical Cancer Research, 2017, 23, 2267-2276.	3.2	64
186	Countering the 'counterattack' hypothesis. Nature Medicine, 2001, 7, 259-259.	15.2	63
187	T-Cell Receptor Gene Therapy of Established Tumors in a Murine Melanoma Model. Journal of Immunotherapy, 2008, 31, 1-6.	1.2	63
188	Collapse of the Tumor Stroma is Triggered by IL-12 Induction of Fas. Molecular Therapy, 2013, 21, 1369-1377.	3.7	62
189	Autoimmunity and the Immunotherapy of Cancer: Targeting the "Self" to Destroy the "Other". Critical Reviews in Immunology, 2000, 20, 18.	1.0	62
190	The effects of euglycemic hyperinsulinemia and amino acid infusion on regional and whole body glucose disposal in man. Metabolism: Clinical and Experimental, 1991, 40, 59-65.	1.5	61
191	Programming CD8+ T cells for effective immunotherapy. Current Opinion in Immunology, 2006, 18, 363-370.	2.4	61
192	Pharmacologic Induction of CD8 ⁺ T Cell Memory: Better Living Through Chemistry. Science Translational Medicine, 2009, 1, 11ps12.	5.8	61
193	T cell-tumor cell: a fatal interaction?. Cancer Immunology, Immunotherapy, 1998, 47, 65-71.	2.0	60
194	CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood, 2006, 108, 3818-3823.	0.6	59
195	Moving T memory stem cells to the clinic. Blood, 2013, 121, 567-568.	0.6	59
196	Cell Transfer Therapy for Cancer: Lessons from Sequential Treatments of a Patient With Metastatic Melanoma. Journal of Immunotherapy, 2003, 26, 385-393.	1.2	58
197	Developing recombinant and synthetic vaccines for the treatment of melanoma. Current Opinion in Oncology, 1999, 11, 50.	1.1	58
198	HLA Associations in the Antitumor Response Against Malignant Melanoma. Journal of Immunotherapy, 1995, 18, 242-252.	1.2	57

#	Article	IF	CITATIONS
199	Glucocorticoids Do Not Inhibit Antitumor Activity of Activated CD8+ T Cells. Journal of Immunotherapy, 2005, 28, 517-524.	1.2	57
200	Mining the mutanome: developing highly personalized Immunotherapies based on mutational analysis of tumors. , 2013, 1, 11.		56
201	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	0.6	54
202	Locus-Specific Analysis of Human Leukocyte Antigen Class I Expression in Melanoma Cell Lines. Journal of Immunotherapy, 1994, 16, 13-23.	1.2	52
203	Novel "Elements―of Immune Suppression within the Tumor Microenvironment. Cancer Immunology Research, 2017, 5, 426-433.	1.6	52
204	The Stoichiometric Production of IL-2 and IFN-γ mRNA Defines Memory T Cells That Can Self-Renew After Adoptive Transfer in Humans. Science Translational Medicine, 2012, 4, 149ra120.	5.8	51
205	Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. Journal of Experimental Medicine, 2019, 216, 2619-2634.	4.2	51
206	Identification of a Kb-restricted CTL Epitope of β-Galactosidase: Potential Use in Development of Immunization Protocols for "Self―Antigens. Methods, 1997, 12, 117-123.	1.9	50
207	Evaluation of Prime/Boost Regimens Using Recombinant Poxvirus/Tyrosinase Vaccines for the Treatment of Patients with Metastatic Melanoma. Clinical Cancer Research, 2006, 12, 2526-2537.	3.2	50
208	Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases. Molecular Cancer Therapeutics, 2006, 5, 2592-2599.	1.9	49
209	The In vivo Expansion Rate of Properly Stimulated Transferred CD8+ T Cells Exceeds That of an Aggressively Growing Mouse Tumor. Cancer Research, 2006, 66, 1132-1138.	0.4	49
210	The transcription factor BACH2 promotes tumor immunosuppression. Journal of Clinical Investigation, 2016, 126, 599-604.	3.9	49
211	Type I Interferons are essential for the efficacy of replicase-based DNA vaccines. Vaccine, 2006, 24, 5110-5118.	1.7	48
212	The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. ELife, 2015, 4, .	2.8	48
213	GILT Accelerates Autoimmunity to the Melanoma Antigen Tyrosinase-Related Protein 1. Journal of Immunology, 2010, 185, 2828-2835.	0.4	47
214	Cancer Immunotherapy. New England Journal of Medicine, 2008, 359, 1072-1073.	13.9	45
215	Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction. Nature Communications, 2016, 7, 13895.	5.8	45
216	InÂvitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking inÂvivo antigen-experienced cells. Cancer Immunology, Immunotherapy, 2011, 60, 739-749.	2.0	44

#	Article	IF	CITATIONS
217	Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. Journal of Leukocyte Biology, 2004, 76, 333-337.	1.5	43
218	Interleukin-10 Enhances the Therapeutic Effectiveness of a Recombinant Poxvirus-Based Vaccine in an Experimental Murine Tumor Model. Journal of Immunotherapy, 1999, 22, 489-496.	1.2	40
219	Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of miceÂbearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunology, Immunotherapy, 2019, 68, 1805-1817.	2.0	40
220	Cancer vaccines: progress reveals new complexities. Journal of Clinical Investigation, 2002, 110, 289-294.	3.9	40
221	Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood, 2008, 112, 4746-4754.	0.6	39
222	Reprogramming antitumor immunity. Trends in Immunology, 2014, 35, 178-185.	2.9	39
223	Mg2+ regulation of kinase signaling and immune function. Journal of Experimental Medicine, 2019, 216, 1828-1842.	4.2	37
224	An effective mouse model for adoptive cancer immunotherapy targeting neoantigens. JCI Insight, 2019, 4, .	2.3	36
225	Viral Sequestration of Antigen Subverts Cross Presentation to CD8+ T Cells. PLoS Pathogens, 2009, 5, e1000457.	2.1	35
226	Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Reports, 2018, 22, 3175-3190.	2.9	35
227	The Cish SH2 domain is essential for PLC-γ1 regulation in TCR stimulated CD8+ T cells. Scientific Reports, 2018, 8, 5336.	1.6	32
228	Altered CD8+ T-Cell Responses When Immunizing With Multiepitope Peptide Vaccines. Journal of Immunotherapy, 2006, 29, 224-231.	1.2	31
229	Microbiota Modulation of Myeloid Cells in Cancer Therapy. Cancer Immunology Research, 2015, 3, 103-109.	1.6	31
230	Cross-priming utilizes antigen not available to the direct presentation pathway. Immunology, 2006, 119, 63-73.	2.0	30
231	Transcriptional profiles reveal a stepwise developmental program of memory CD8+ T cell differentiation. Vaccine, 2015, 33, 914-923.	1.7	29
232	Anti-Tumor Activity of Cytotoxic T Lymphocytes Elicited with Recombinant and Synthetic Forms of a Model Tumor-Associated Antigen. Journal of Immunotherapy, 1995, 18, 139-146.	1.2	28
233	Transfectant Influenza A Viruses Are Effective Recombinant Immunogens in the Treatment of Experimental Cancer. Virology, 1998, 249, 89-97.	1.1	28
234	Increased Frequency of Suppressive Regulatory T Cells and T Cell-Mediated Antigen Loss Results in Murine Melanoma Recurrence. Journal of Immunology, 2012, 189, 767-776.	0.4	28

#	Article	IF	CITATIONS
235	Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models. , 2020, 8, e000210.		27
236	Retroviral transduction of interferon-? cDNA into a nonimmunogenic murinefibrosarcoma: generation of T cells in draining lymph nodes capable of treating established parental metastatic tumor. Cancer Immunology, Immunotherapy, 1993, 37, 286-292.	2.0	26
237	Assumptions of the tumor â€~escape' hypothesis. Seminars in Cancer Biology, 2002, 12, 81-86.	4.3	26
238	Normal Tissue Depresses While Tumor Tissue Enhances Human T Cell Responses In Vivo to a Novel Self/Tumor Melanoma Antigen, OA1. Journal of Immunology, 2003, 170, 1579-1585.	0.4	26
239	Programming tumor-reactive effector memory CD8+ T cells in vitro obviates the requirement for in vivo vaccination. Blood, 2009, 114, 1776-1783.	0.6	26
240	Does IL-17 promote tumor growth?. Blood, 2009, 114, 231-232.	0.6	26
241	MHC class I and class II presentation of tumor antigen in retrovirally and adenovirally transduced dendritic cells. Cancer Gene Therapy, 2002, 9, 946-950.	2.2	25
242	Induction of CD4+ T cell–dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. Journal of Clinical Investigation, 2002, 109, 1463-1470.	3.9	25
243	Different Adjuvanticity of Incomplete Freund's Adjuvant Derived From Beef or Vegetable Components in Melanoma Patients Immunized With a Peptide Vaccine. Journal of Immunotherapy, 2010, 33, 626-629.	1.2	24
244	Identification of the Genomic Insertion Site of Pmel-1 TCR $\hat{I}\pm$ and \hat{I}^2 Transgenes by Next-Generation Sequencing. PLoS ONE, 2014, 9, e96650.	1.1	24
245	Type I Cytokines Synergize with Oncogene Inhibition to Induce Tumor Growth Arrest. Cancer Immunology Research, 2015, 3, 37-47.	1.6	24
246	Expression of a "self-"antigen by human tumor cells enhances tumor antigen-specific CD4(+) T-cell function. Cancer Research, 2002, 62, 5144-7.	0.4	24
247	Recognition of neuroectodermal tumors by melanoma-specific cytotoxic T lymphocytes: evidence for antigen sharing by tumors derived from the neural crest. Cancer Immunology, Immunotherapy, 1994, 39, 73-83.	2.0	23
248	Creating therapeutic cancer vaccines: notes from the battlefield. Trends in Immunology, 2001, 22, 5-7.	2.9	23
249	Mouse Model for Preâ€Clinical Study of Human Cancer Immunotherapy. Current Protocols in Immunology, 2015, 108, 20.1.1-20.1.43.	3.6	23
250	Toll-like receptor agonist therapy can profoundly augment the antitumor activity of adoptively transferred CD8+ T cells without host preconditioning. , 2016, 4, 6.		23
251	Adoptive T cell therapy of cancer. Current Opinion in Immunology, 2009, 21, 187-189.	2.4	22
252	Arginine Arms T Cells to Thrive and Survive. Cell Metabolism, 2016, 24, 647-648.	7.2	22

#	Article	IF	CITATIONS
253	Double or nothing on cancer immunotherapy. Nature Biotechnology, 2013, 31, 33-34.	9.4	21
254	Vaccines to die for. Nature Biotechnology, 2001, 19, 527-528.	9.4	20
255	Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68. BMC Cancer, 2011, 11, 451.	1.1	20
256	ASXL3 Is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and a Potential Therapeutic Target in Small Cell Lung Cancer. Cancer Research, 2017, 77, 6267-6281.	0.4	20
257	DNA vaccines and apoptosis: to kill or not to kill?. Journal of Clinical Investigation, 2003, 112, 22-24.	3.9	20
258	Reply to "Cancer vaccines: pessimism in check". Nature Medicine, 2004, 10, 1279-1280.	15.2	19
259	Can Antitumor Immunity Help to Explain "Oncogene Addiction�. Cancer Cell, 2010, 18, 403-405.	7.7	19
260	Transplantation of mouse HSCs genetically modified to express a CD4-restricted TCR results in long-term immunity that destroys tumors and initiates spontaneous autoimmunity. Journal of Clinical Investigation, 2010, 120, 4273-4288.	3.9	19
261	High-avidity Autoreactive CD4+ T Cells Induce Host CTL, Overcome Tregs and Mediate Tumor Destruction. Journal of Immunotherapy, 2009, 32, 677-688.	1.2	18
262	IFNâ€Î³â€receptor signaling ameliorates transplant vasculopathy through attenuation of CD8 ⁺ Tâ€cellâ€mediated injury of vascular endothelial cells. European Journal of Immunology, 2010, 40, 733-743.	1.6	18
263	Reply to: "β-catenin does not regulate memory T cell phenotype― Nature Medicine, 2010, 16, 514-515.	15.2	18
264	Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. Journal of Immunology, 2016, 197, 644-654.	0.4	18
265	Silencing stemness in T cell differentiation. Science, 2018, 359, 163-164.	6.0	18
266	Strength in Numbers: Identifying Neoantigen Targets for Cancer Immunotherapy. Cell, 2020, 183, 591-593.	13.5	18
267	A "Big Data―View of the Tumor "Immunome― Immunity, 2013, 39, 631-632.	6.6	17
268	TSCOT + Thymic Epithelial Cell-Mediated Sensitive CD4 Tolerance by Direct Presentation. PLoS Biology, 2008, 6, e191.	2.6	16
269	The next wave of recombinant and synthetic anticancer vaccines. Seminars in Cancer Biology, 1995, 6, 337-347.	4.3	15
270	The power and pitfalls of IL-12. Blood, 2012, 119, 4096-4097.	0.6	15

#	Article	IF	CITATIONS
271	Big bang theory of stem-like T cells confirmed. Blood, 2014, 124, 476-477.	0.6	15
272	Generation of polyclonal rabbit antisera to mouse melanoma associated antigens using gene gun immunization. Journal of Immunological Methods, 1998, 214, 51-62.	0.6	14
273	Use of standard criteria for assessment of cancer vaccines. Lancet Oncology, The, 2005, 6, 3-4.	5.1	14
274	Immunologic ignorance of vascular endothelial cells expressing minor histocompatibility antigen. Blood, 2008, 111, 4588-4595.	0.6	13
275	Next generation immunotherapy: enhancing stemness of polyclonal T cells to improve anti-tumor activity. Current Opinion in Immunology, 2022, 74, 39-45.	2.4	13
276	Memoirs of a Reincarnated T Cell. Cell Stem Cell, 2013, 12, 6-8.	5.2	11
277	Treatment of aggressive lymphomas with anti-CD19 CAR T cells. Nature Reviews Clinical Oncology, 2014, 11, 685-686.	12.5	11
278	Dose-Dependent and Schedule-Dependent Effects of Interleukin-12 on Antigen-Specific CD8 Responses. Journal of Interferon and Cytokine Research, 2000, 20, 589-596.	0.5	10
279	Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requires competent class II MHC. Prostate, 2002, 53, 183-191.	1.2	10
280	DNA vaccines and apoptosis: to kill or not to kill?. Journal of Clinical Investigation, 2003, 112, 22-24.	3.9	10
281	The multiple uses of viruses for studying antigen processing. Seminars in Virology, 1993, 4, 109-116.	4.1	8
282	Antitumor efficacy of tumor-antigen-encoding recombinant poxvirus immunization in Dunning rat prostate cancer: implications for clinical genetic vaccine development. World Journal of Urology, 2000, 18, 136-142.	1.2	8
283	Hierarchy, Tolerance, and Dominance in the Antitumor T-Cell Response. Journal of Immunotherapy, 2001, 24, 193-194.	1.2	8
284	Polymeric Structure and Host Toll-like Receptor 4 Dictate Immunogenicity of NY-ESO-1 Antigen in Vivo. Journal of Biological Chemistry, 2011, 286, 37077-37084.	1.6	7
285	Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cellular and Molecular Immunology, 0, , .	4.8	7
286	Identification of Small Molecule Enhancers of Immunotherapy for Melanoma. Scientific Reports, 2020, 10, 5688.	1.6	7
287	Multiply restimulated human thymic regulatory T cells express distinct signature regulatory T-cell transcription factors without evidence of exhaustion. Cytotherapy, 2021, 23, 704-714.	0.3	7
288	Cancer Vaccines '98: a reductionistic approach. Trends in Molecular Medicine, 1998, 4, 327.	2.6	6

#	Article	IF	CITATIONS
289	Targeting Akt in cell transfer immunotherapy for cancer. Oncolmmunology, 2016, 5, e1014776.	2.1	6
290	HPV-targeted tumor-infiltrating lymphocytes for cervical cancer Journal of Clinical Oncology, 2014, 32, LBA3008-LBA3008.	0.8	6
291	Poxviruses as vectors for cancer immunotherapy. , 2000, , 47-61.		5
292	Highlights of the society for immunotherapy of cancer (SITC) 27th annual meeting. , 2013, 1, .		5
293	Customizing Functionality and Payload Delivery for Receptor-Engineered T Cells. Cell, 2016, 167, 304-306.	13.5	5
294	Identifying the source of tumour-infiltrating T cells. Nature, 2019, 576, 385-386.	13.7	5
295	Using Human Induced Pluripotent Stem Cells for the Generation of Tumor Antigen-specific T Cells. Journal of Visualized Experiments, 2019, , .	0.2	4
296	A Three-dimensional Thymic Culture System to Generate Murine Induced Pluripotent Stem Cell-derived Tumor Antigen-specific Thymic Emigrants. Journal of Visualized Experiments, 2019, , .	0.2	3
297	Internal Checkpoint Regulates T Cell Neoantigen Reactivity and Susceptibility to PD1 Blockade. SSRN Electronic Journal, 0, , .	0.4	3
298	Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. Journal of Clinical Investigation, 2007, 117, 3140-3140.	3.9	2
299	Nine lives for TH9s?. Nature Medicine, 2012, 18, 1177-1178.	15.2	2
300	141 The Role of T Memory Stem Cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 59, 59.	0.9	1
301	Stem cells and cancer immunotherapy: Arrowhead's 2nd annual cancer immunotherapy conference. , 2014, 2, .		1
302	Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an In vitro melanoma model. , 1999, 80, 781.		1
303	5-AZA-2′-Deoxycytidine in Cancer Immunotherapy: A Mouse to Man Story. Cancer Research, 2007, 67, 2901-2901.	0.4	0
304	Engineering the immune response to "self" for effective cancer immunotherapy. , 2014, 2, P22.		0
305	Inhibition of the T cell oxygen sensing machinery promotes anti-tumor efficacy. , 2015, 3, .		0
306	Partly MHC Matched Allogeneic Tumor Specific T Cells Mediate Tumor Regression without Inducing GVHD in Immunosuppressed Host Blood, 2006, 108, 5210-5210.	0.6	0

#	Article	IF	CITATIONS
307	Treatment of Established B16 Murine Melanoma Tumors with Tyrp-1 Specific CD4+ Lymphocytes Blood, 2006, 108, 3688-3688.	0.6	0
308	IL12 polarization of mouse and human Tâ€eells: implications for adoptive immunotherapy. FASEB Journal, 2008, 22, .	0.2	0