Gary S Gilkeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205851/publications.pdf

Version: 2024-02-01

70 3,384 29 56
papers citations h-index g-index

71 71 71 5079
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 2467-2475.	6.7	408
2	Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Annals of the Rheumatic Diseases, 2010, 69, 1423-1429.	0.9	380
3	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	12.8	314
4	Estrogen Receptors in Immunity and Autoimmunity. Clinical Reviews in Allergy and Immunology, 2011, 40, 66-73.	6.5	232
5	A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nature Genetics, 2017, 49, 433-437.	21.4	143
6	X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and SjĶgren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1290-1300.	5.6	114
7	Mouse models of lupus: what they tell us and what they don't. Lupus Science and Medicine, 2018, 5, e000199.	2.7	112
8	Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. Clinical Immunology, 2008, 128, 259-268.	3.2	94
9	Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clinical Rheumatology, 2014, 33, 1611-1619.	2.2	91
10	A Long-Term Follow-Up Study of Allogeneic Mesenchymal Stem/Stromal Cell Transplantation in Patients with Drug-Resistant Systemic Lupus Erythematosus. Stem Cell Reports, 2018, 10, 933-941.	4.8	79
11	Prospective Measure of Serum 3-Nitrotyrosine Levels in Systemic Lupus Erythematosus: Correlation with Disease Activity. Proceedings of the Association of American Physicians, 1999, 111, 611-621.	2.0	77
12	The IRF5â€"TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Human Molecular Genetics, 2015, 24, 582-596.	2.9	74
13	Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Annals of the Rheumatic Diseases, 2019, 78, 1235-1241.	0.9	64
14	Allogenic Mesenchymal Stem Cell Transplantation Ameliorates Nephritis in Lupus Mice via Inhibition of B-Cell Activation. Cell Transplantation, 2013, 22, 2279-2290.	2.5	61
15	Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription. American Journal of Human Genetics, 2014, 94, 586-598.	6.2	59
16	Discerning Risk of Disease Transition in Relatives of Systemic Lupus Erythematosus Patients Utilizing Soluble Mediators and Clinical Features. Arthritis and Rheumatology, 2017, 69, 630-642.	5.6	56
17	Differential Efficacy of Human Mesenchymal Stem Cells Based on Source of Origin. Journal of Immunology, 2014, 193, 4381-4390.	0.8	53
18	Differential effect of allogeneic versus syngeneic mesenchymal stem cell transplantation in MRL/lpr and (NZB/NZW)F1 mice. Clinical Immunology, 2012, 145, 142-152.	3.2	52

#	Article	IF	CITATIONS
19	Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy. Stem Cells Translational Medicine, 2018, 7, 11-19.	3.3	51
20	Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Scientific Reports, 2019, 9, 8367.	3.3	49
21	Estrogen receptor alpha modulates toll-like receptor signaling in murine lupus. Clinical Immunology, 2012, 144, 1-12.	3.2	44
22	Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Human Molecular Genetics, 2018, 27, 3813-3824.	2.9	43
23	Combined role of vitamin D status and <i>CYP24A1</i> in the transition to systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2017, 76, 153-158.	0.9	40
24	Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. Journal of Autoimmunity, 2020, 108, 102420.	6.5	39
25	Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression. PLoS Genetics, 2013, 9, e1003870.	3.5	36
26	Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. American Journal of Human Genetics, 2015, 96, 731-739.	6.2	36
27	A plausibly causal functional lupus-associated risk variant in the STAT1–STAT4 locus. Human Molecular Genetics, 2018, 27, 2392-2404.	2.9	34
28	Endothelial Nitric Oxide Synthase Reduces Crescentic and Necrotic Glomerular Lesions, Reactive Oxygen Production, and MCP1 Production in Murine Lupus Nephritis. PLoS ONE, 2013, 8, e64650.	2.5	33
29	Sex differences in monocytes and TLR4 associated immune responses; implications for systemic lupus erythematosus (SLE). Journal of Immunotherapy Applications, 2014, 1, 1.	3.0	32
30	Impact of sphingosine kinase 2 deficiency on the development of TNF-alpha-induced inflammatory arthritis. Rheumatology International, 2013, 33, 2677-2681.	3.0	31
31	Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues. Clinical Immunology, 2017, 183, 174-180.	3.2	29
32	Early Ovariectomy Results in Reduced Numbers of CD11c+/CD11b+ Spleen Cells and Impacts Disease Expression in Murine Lupus. Frontiers in Immunology, 2016, 7, 31.	4.8	25
33	Sex Differences in Monocyte Activation in Systemic Lupus Erythematosus (SLE). PLoS ONE, 2014, 9, e114589.	2.5	25
34	Pregnancy outcomes among African–American patients with systemic lupus erythematosus compared with controls. Lupus Science and Medicine, 2014, 1, e000020.	2.7	24
35	Hematopoetic and mesenchymal stem cell transplantation in the treatment of refractory systemic lupus erythematosus — Where are we now?. Clinical Immunology, 2013, 148, 328-334.	3.2	23
36	Inflammatory modulation of PPAR $\hat{1}^3$ expression and activity. Clinical Immunology, 2006, 118, 276-283.	3.2	19

3

#	Article	IF	CITATIONS
37	Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Research and Therapy, 2017, 8, 192.	5.5	19
38	Toll-like receptor-mediated immune responses in intestinal macrophages; implications for mucosal immunity and autoimmune diseases. Clinical Immunology, 2016, 173, 81-86.	3.2	18
39	Acetylation impacts Fliâ€1â€driven regulation of granulocyte colony stimulating factor. European Journal of Immunology, 2016, 46, 2322-2332.	2.9	18
40	Decreased <i>SMG7</i> expression associates with lupus-risk variants and elevated antinuclear antibody production. Annals of the Rheumatic Diseases, 2016, 75, 2007-2013.	0.9	16
41	Targeting glycosphingolipid metabolism as a potential therapeutic approach for treating disease in female MRL/lpr lupus mice. PLoS ONE, 2020, 15, e0230499.	2.5	14
42	Expression of GM-CSF Is Regulated by Fli-1 Transcription Factor, a Potential Drug Target. Journal of Immunology, 2021, 206, 59-66.	0.8	14
43	Human SLE variant <i>NCF1</i> -R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases, 2022, 81, 255-267.	0.9	14
44	Are Microparticles the Missing Link between Thrombosis and Autoimmune Diseases? Involvement in Selected Rheumatologic Diseases. Seminars in Thrombosis and Hemostasis, 2014, 40, 675-681.	2.7	13
45	Estrogen receptor alpha deficiency protects against development of cognitive impairment in murine lupus. Journal of Neuroinflammation, 2014, 11, 171.	7.2	13
46	Effect of genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production and renal disease in MRL/lpr mice. Clinical Immunology, 2003, 107, 186-197.	3.2	12
47	A highlight from the LUPUS 2014 meeting: eight great ideas. Lupus Science and Medicine, 2015, 2, e000087.	2.7	12
48	Plasmacytoid dendritic cell distribution and maturation are altered in lupus prone mice prior to the onset of clinical disease. Clinical Immunology, 2017, 175, 109-114.	3.2	12
49	Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks. International Journal of Molecular Sciences, 2018, 19, 2331.	4.1	12
50	Rigorous Plasma Microbiome Analysis Method Enables Disease Association Discovery in Clinic. Frontiers in Microbiology, 2020, 11, 613268.	3.5	12
51	<scp>Upâ€Regulated</scp> Interleukinâ€10 Induced by <scp>E2F</scp> Transcription Factor 2– <scp> MicroRNA</scp> â€17â€5p Circuitry in Extrafollicular Effector B Cells Contributes to Autoantibody Production in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2022, 74, 496-507.	5.6	12
52	Estrogen Receptor α Deficiency Modulates TLR Ligand–Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice. Journal of Immunology, 2015, 195, 5561-5571.	0.8	11
53	Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus. Clinical Immunology, 2015, 161, 157-162.	3.2	10
54	Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Annals of the Rheumatic Diseases, 2016, 75, 242-252.	0.9	10

#	Article	IF	CITATIONS
55	Novel mechanism for estrogen receptor alpha modulation of murine lupus. Journal of Autoimmunity, 2019, 97, 59-69.	6.5	9
56	Genetic landscape of Gullah African Americans. American Journal of Physical Anthropology, 2021, 175, 905-919.	2.1	9
57	Safety, immunological effects and clinical response in a phase I trial of umbilical cord mesenchymal stromal cells in patients with treatment refractory SLE. Lupus Science and Medicine, 2022, 9, e000704.	2.7	9
58	Mesenchymal Stem Cells from Chronic Pancreatitis Patients Show Comparable Potency Compared to Cells from Healthy Donors. Stem Cells Translational Medicine, 2019, 8, 418-429.	3.3	8
59	Deep sequencing reveals a DAP1 regulatory haplotype that potentiates autoimmunity in systemic lupus erythematosus. Genome Biology, 2020, 21, 281.	8.8	8
60	An Analytic Approach Using Candidate Gene Selection and Logic Forest to Identify Gene by Environment Interactions (G × E) for Systemic Lupus Erythematosus in African Americans. Genes, 2018, 9, 496.	2.4	7
61	Safety and Efficacy of Mesenchymal Stromal Cells and Other Cellular Therapeutics in Rheumatic Diseases in 2022: A review of what we know so far. Arthritis and Rheumatology, 2022, , .	5.6	7
62	Complement-Targeted Therapies in Lupus. Current Treatment Options in Rheumatology, 2015, 1, 10-18.	1.4	3
63	Treating Systemic Lupus Erythematosus (SLE): The Impact of Historical Environmental Context on Healthcare Perceptions and Decision-Making in Charleston, South Carolina. International Journal of Environmental Research and Public Health, 2020, 17, 2285.	2.6	2
64	Formal neurocognitive function and anti-N-methyl-D-aspartate receptor antibodies in paediatric lupus. Lupus Science and Medicine, 2021, 8, e000462.	2.7	2
65	New therapies and preventive strategies to treat and minimize damage in lupus. Current Rheumatology Reports, 2005, 7, 457-462.	4.7	1
66	Georgia Abortion Law and Our Commitment to Patients. Arthritis and Rheumatology, 2020, 72, 377-378.	5.6	1
67	A9.15â€Higher disease damage among african americans with familial versus sporadic systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2014, 73, A98-A98.	0.9	0
68	154â€Impact of diagnosis age on quality of life among patients with systemic lupus erythematosus. , 2019, , .		0
69	70 R848 (Resiquimod), a TLR 7/8 agonist, accelerates disease and causes a fatal myeloproliferative disorder in NZM 2410 lupus-prone mice. , 2019, , .		0
70	1506â€A human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. , 2021, , .		0