
Yibin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205748/publications.pdf Version: 2024-02-01

VIRINILI

#	Article	IF	CITATIONS
1	Achieving Super Broadband Electromagnetic Absorption by Optimizing Impedance Match of rGO Sponge Metamaterials. Advanced Functional Materials, 2022, 32, 2107508.	7.8	107
2	Twin‣tructured Graphene Metamaterials with Anomalous Mechanical Properties. Advanced Materials, 2022, 34, e2200444.	11.1	17
3	Reduced Graphene Oxide/MXene Composite Foam with Multilayer Structure for Electromagnetic Interference Shielding and Heat Insulation Applications. Advanced Engineering Materials, 2022, 24, .	1.6	18
4	Reduced Graphene Oxide/Carbon Nanofiber Based Composite Fabrics with Spider Web-like Structure for Microwave Absorbing Applications. Advanced Fiber Materials, 2022, 4, 1164-1176.	7.9	31
5	Anisotropic electromagnetic absorption of the aligned Ti3C2Tx MXene/RGO nanocomposite foam. Composites Science and Technology, 2022, 227, 109609.	3.8	31
6	Recent Progress in Graphene/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2001105.	11.1	210
7	In Situ Dual-Template Method of Synthesis of Inverse-Opal Co ₃ O ₄ @TiO ₂ with Wideband Microwave Absorption. Inorganic Chemistry, 2021, 60, 18455-18465.	1.9	15
8	Microwave absorption enhancement via graphene sheet-guided preparation of flake-like titanium carbide. Journal of Applied Physics, 2021, 130, .	1.1	3
9	Porous-Carbon Aerogels with Tailored Sub-Nanopores for High Cycling Stability and Rate Capability Potassium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 27045-27054.	4.0	16
10	Largeâ€scale synthesis of hollow carbon fibers with ultraâ€large diameter by thermally controlled pyrolysis. Journal of the American Ceramic Society, 2020, 103, 5629-5637.	1.9	5
11	Anisotropic Electromagnetic Absorption of Aligned Ti ₃ C ₂ T <i>_x</i> MXene/Gelatin Nanocomposite Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 33128-33138.	4.0	125
12	Flexible Composite Carbon Films Prepared by a Pancakeâ€Making Method for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2020, 7, 1901815.	1.9	29
13	Highly Conductive Multifunctional rGO/CNT Hybrid Sponge for Electromagnetic Wave Shielding and Strain Sensor. Advanced Materials Technologies, 2019, 4, 1900443.	3.0	32
14	Dependence of reduction degree on electromagnetic absorption of graphene nanoribbon unzipped from carbon nanotube. Journal of Colloid and Interface Science, 2019, 552, 196-203.	5.0	37
15	Fibrous Composites with Double-Continuous Conductive Network for Strong Low-Frequency Microwave Absorption. Industrial & Engineering Chemistry Research, 2019, 58, 11927-11938.	1.8	39
16	Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Advances, 2019, 1, 4895-4903.	2.2	27
17	Lightweight and Efficient Microwave-Absorbing Materials Based on Loofah-Sponge-Derived Hierarchically Porous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1228-1238.	3.2	111
18	Superflexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega, 2018, 3, 3599-3607.	1.6	40

Υιβιν Li

#	Article	IF	CITATIONS
19	Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper. Journal of Materials Chemistry C, 2018, 6, 12321-12328.	2.7	37
20	The Out-of-Plane Compression Behavior of Cross-Ply AS4/PEEK Thermoplastic Composite Laminates at High Strain Rates. Materials, 2018, 11, 2312.	1.3	17
21	Controlled Airâ€Etching Synthesis of Porousâ€Carbon Nanotube Aerogels with Ultrafast Charging at 1000 A g ^{â^'1} . Small, 2018, 14, e1802394.	5.2	37
22	Facile Synthesis of Highly Defected Silicon Carbide Sheets for Efficient Absorption of Electromagnetic Waves. Journal of Physical Chemistry C, 2018, 122, 18537-18544.	1.5	49
23	Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 21371-21381.	4.0	148
24	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. ACS Applied Materials & Interfaces, 2017, 9, 44010-44017.	4.0	60
25	Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale, 2016, 8, 18042-18049.	2.8	74
26	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Interfaces, 2016, 8, 34027-34033.	4.0	55
27	Biomimic Hairy Skin Tactile Sensor Based on Ferromagnetic Microwires. ACS Applied Materials & Interfaces, 2016, 8, 33848-33855.	4.0	33
28	Multifunctional, Highly Flexible, Freeâ€Standing 3D Polypyrrole Foam. Small, 2016, 12, 4070-4076.	5.2	71
29	Multifunctional Stiff Carbon Foam Derived from Bread. ACS Applied Materials & Interfaces, 2016, 8, 16852-16861.	4.0	151
30	Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability. Nanoscale, 2016, 8, 626-633.	2.8	36
31	Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. Journal of Materials Chemistry C, 2015, 3, 11893-11901.	2.7	134
32	Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano, 2015, 9, 8933-8941.	7.3	666
33	Largeâ€Deformation, Multifunctional Artificial Muscles Based on Singleâ€Walled Carbon Nanotube Yarns. Advanced Engineering Materials, 2015, 17, 14-20.	1.6	36
34	Multifunctional graphene sheet–nanoribbon hybrid aerogels. Journal of Materials Chemistry A, 2014, 2, 14994-15000.	5.2	54
35	Overtwisted, Resolvable Carbon Nanotube Yarn Entanglement as Strain Sensors and Rotational Actuators. ACS Nano, 2013, 7, 8128-8135.	7.3	94
36	Microstructure, mechanical and oxidation properties of in-situ synthesized (Y ₂ O ₃ + TiC)/Ti-4.5Si composites. International Journal of Materials Research, 2013, 104, 65-70.	0.1	0

Υιβιν Li

#	Article	IF	CITATIONS
37	Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. Journal of Materials Chemistry, 2012, 22, 5928.	6.7	168
38	Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors. Journal of Materials Chemistry, 2012, 22, 714-718.	6.7	34
39	Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. Journal of Materials Chemistry, 2012, 22, 18748.	6.7	120
40	Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes. Nano Research, 2012, 5, 595-604.	5.8	9
41	Dependence of Amino-functionalization on Interfacial Adhesion Strength in Epoxy/Al Laminated Composites. Polymers and Polymer Composites, 2012, 20, 445-452.	1.0	1
42	Carbon Nanotubes: Superâ€Stretchable Springâ€Like Carbon Nanotube Ropes (Adv. Mater. 21/2012). Advanced Materials, 2012, 24, 2935-2935.	11.1	3
43	Enhancement of compositeâ€metal interfacial adhesion strength by dendrimer. Surface and Interface Analysis, 2011, 43, 726-733.	0.8	7
44	Improving the Cyclicâ€Oxidation Resistance of Ti ₃ AlC ₂ at 550°C and 650°C by Preoxidation at 1100°C. International Journal of Applied Ceramic Technology, 2010, 7, 760-765.	1.1	6
45	Rapid synthesis of bulk Ti ₂ AlC by self-propagating high temperature combustion synthesis with a pseudo–hot isostatic pressing process. Journal of Materials Research, 2009, 24, 2528-2535.	1.2	76
46	Shape Evolution and Magnetic Properties of Cobalt Sulfide. Crystal Growth and Design, 2008, 8, 3745-3749.	1.4	123