
Vincenzo Scarlato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting of Regulators as a Promising Approach in the Search for Novel Antimicrobial Agents. Microorganisms, 2022, 10, 185.	3.6	12
2	Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. IScience, 2022, 25, 103931.	4.1	5
3	Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms, 2022, 10, 834.	3.6	1
4	Targeting the Essential Transcription Factor HP1043 of Helicobacter pylori: A Drug Repositioning Study. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	4
5	Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathogens, 2021, 17, e1009461.	4.7	4
6	Definition of the Binding Architecture to a Target Promoter of HP1043, the Essential Master Regulator of Helicobacter pylori. International Journal of Molecular Sciences, 2021, 22, 7848.	4.1	8
7	Feeling the Heat: The Campylobacter jejuni HrcA Transcriptional Repressor Is an Intrinsic Protein Thermosensor. Biomolecules, 2021, 11, 1413.	4.0	4
8	Cooperative Regulation of Campylobacter jejuni Heat-Shock Genes by HspR and HrcA. Microorganisms, 2020, 8, 1161.	3.6	4
9	The Helicobacter pylori HspR-Modulator CbpA Is a Multifunctional Heat-Shock Protein. Microorganisms, 2020, 8, 251.	3.6	3
10	Helicobacter pylori Stress-Response: Definition of the HrcA Regulon. Microorganisms, 2019, 7, 436.	3.6	11
11	Absence of Protein A Expression Is Associated With Higher Capsule Production in Staphylococcal Isolates. Frontiers in Microbiology, 2019, 10, 863.	3.5	16
12	Roles and Regulation of the Heat Shock Proteins of the Major Human Pathogen Helicobacter pylori. Heat Shock Proteins, 2018, , 411-427.	0.2	0
13	The Helicobacter pylori Heat-Shock Repressor HspR: Definition of Its Direct Regulon and Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter. Frontiers in Microbiology, 2018, 9, 1887.	3.5	9
14	The Interplay between Two Transcriptional Repressors and Chaperones Orchestrates Helicobacter pylori Heat-Shock Response. International Journal of Molecular Sciences, 2018, 19, 1702.	4.1	10
15	Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiology Reviews, 2017, 41, 549-574.	8.6	140
16	Insight into the essential role of the Helicobacter pylori HP1043 orphan response regulator: genome-wide identification and characterization of the DNA-binding sites. Scientific Reports, 2017, 7, 41063.	3.3	34
17	HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis. Journal of Bacteriology, 2016, 198, 644-654.	2.2	16
18	Global Transcriptome Analysis Reveals Small RNAs Affecting Neisseria meningitidis Bacteremia. PLoS ONE 2015 10 e0126325	2.5	23

2

#	Article	IF	CITATIONS
19	FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Nucleic Acids Research, 2014, 42, 3138-3151.	14.5	38
20	The <scp>HrcA</scp> repressor is the thermosensor of the heatâ€shock regulatory circuit in the human pathogen <scp><i>H</i></scp> <i>elicobacter pylori</i> . Molecular Microbiology, 2014, 92, 910-920.	2.5	26
21	In Depth Analysis of the Helicobacter pylori cag Pathogenicity Island Transcriptional Responses. PLoS ONE, 2014, 9, e98416.	2.5	25
22	In the NadR Regulon, Adhesins and Diverse Meningococcal Functions Are Regulated in Response to Signals in Human Saliva. Journal of Bacteriology, 2012, 194, 460-474.	2.2	28
23	A Convenient and Robust <i>In Vivo</i> Reporter System To Monitor Gene Expression in the Human Pathogen Helicobacter pylori. Applied and Environmental Microbiology, 2012, 78, 6524-6533.	3.1	16
24	A novel Hfqâ€dependent sRNA that is under FNR control and is synthesized in oxygen limitation in <i>Neisseria meningitidis</i> . Molecular Microbiology, 2011, 80, 507-523.	2.5	34
25	Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur. Microbiology (United Kingdom), 2011, 157, 2235-2247.	1.8	10
26	CbpA Acts as a Modulator of HspR Repressor DNA Binding Activity in Helicobacter pylori. Journal of Bacteriology, 2011, 193, 5629-5636.	2.2	14
27	<i>In Vivo</i> Recognition of the <i>fecA3</i> Target Promoter by <i>Helicobacter pylori</i> NikR. Journal of Bacteriology, 2011, 193, 1131-1141.	2.2	15
28	Regulatory circuits in <i>Helicobacter pylori</i> : network motifs and regulators involved in metal-dependent responses. FEMS Microbiology Reviews, 2010, 34, 738-752.	8.6	59
29	Expression of Factor H Binding Protein of Meningococcus Responds to Oxygen Limitation through a Dedicated FNR-Regulated Promoter. Journal of Bacteriology, 2010, 192, 691-701.	2.2	36
30	Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori. PLoS Pathogens, 2010, 6, e1000938.	4.7	47
31	The RNA Chaperone Hfq Is Involved in Stress Response and Virulence in <i>Neisseria meningitidis</i> and Is a Pleiotropic Regulator of Protein Expression. Infection and Immunity, 2009, 77, 1842-1853.	2.2	84
32	A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements. PLoS Pathogens, 2009, 5, e1000710.	4.7	78
33	The Hfq-Dependent Small Noncoding RNA NrrF Directly Mediates Fur-Dependent Positive Regulation of Succinate Dehydrogenase in Neisseria meningitidis. Journal of Bacteriology, 2009, 191, 1330-1342.	2.2	54
34	Growth Phase and Metal-Dependent Transcriptional Regulation of the fecA Genes in Helicobacter pylori. Journal of Bacteriology, 2009, 191, 3717-3725.	2.2	37
35	OxyR tightly regulates catalase expression in <i>Neisseria meningitidis</i> through both repression and activation mechanisms. Molecular Microbiology, 2008, 70, 1152-1165.	2.5	51
36	High-Affinity Ni2+ Binding Selectively Promotes Binding of Helicobacter pylori NikR to Its Target Urease Promoter. Journal of Molecular Biology, 2008, 383, 1129-1143.	4.2	63

#	Article	IF	CITATIONS
37	Transcriptional Regulation of Stress Response and Motility Functions in <i>Helicobacter pylori</i> Is Mediated by HspR and HrcA. Journal of Bacteriology, 2007, 189, 7234-7243.	2.2	47
38	Expression, purification and characterization of the membrane-associated HrcA repressor protein of Helicobacter pylori. Protein Expression and Purification, 2007, 51, 267-275.	1.3	19
39	The Ni2+ binding properties of Helicobacter pylori NikR. Chemical Communications, 2007, , 3649.	4.1	47
40	In Vivo Dissection of the Helicobacter pylori Fur Regulatory Circuit by Genome-Wide Location Analysis. Journal of Bacteriology, 2006, 188, 4654-4662.	2.2	86
41	Effect of Neisseria meningitidis Fur Mutations on Global Control of Gene Transcription. Journal of Bacteriology, 2006, 188, 2483-2492.	2.2	56
42	Mechanisms of Transcription Activation Exerted by GadX and GadW at the gadA and gadBC Gene Promoters of the Glutamate-Based Acid Resistance System in Escherichia coli. Journal of Bacteriology, 2006, 188, 8118-8127.	2.2	65
43	In Vitro Analysis of Protein-Operator Interactions of the NikR and Fur Metal-Responsive Regulators of Coregulated Genes in Helicobacter pylori. Journal of Bacteriology, 2005, 187, 7703-7715.	2.2	89
44	Phosphate flow in the chemotactic response system of Helicobacter pylori. Microbiology (United) Tj ETQq0 0 C) rgBT /Over	loc <u>k</u> 10 Tf 50
45	CrgA Is an Inducible LysR-Type Regulator of Neisseria meningitidis , Acting both as a Repressor and as an Activator of Gene Transcription. Journal of Bacteriology, 2005, 187, 3421-3430.	2.2	58
46	Acid-Induced Activation of the Urease Promoters Is Mediated Directly by the ArsRS Two-Component System of Helicobacter pylori. Infection and Immunity, 2005, 73, 6437-6445.	2.2	86
47	Dual Control of Helicobacter pylori Heat Shock Gene Transcription by HspR and HrcA. Journal of Bacteriology, 2004, 186, 2956-2965.	2.2	34
48	Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Molecular Microbiology, 2004, 52, 1081-1090.	2.5	168
49	An anti-repression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Molecular Microbiology, 2003, 50, 1329-1338.	2.5	38
50	The Iron-Responsive Regulator Fur Is Transcriptionally Autoregulated and Not Essential in Neisseria meningitidis. Journal of Bacteriology, 2003, 185, 6032-6041.	2.2	41
51	Growth Phase-Dependent Regulation of Target Gene Promoters for Binding of the Essential Orphan Response Regulator HP1043 of Helicobacter pylori. Journal of Bacteriology, 2002, 184, 4800-4810.	2.2	56
52	Characterization of the HspR-Mediated Stress Response in Helicobacter pylori. Journal of Bacteriology, 2002, 184, 2925-2930.	2.2	27
53	In vitro selection of high affinity HspR-binding sites within the genome of Helicobacter pylori. Gene, 2002, 283, 63-69.	2.2	15
54	The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Molecular Microbiology, 2002, 42, 1297-1309.	2.5	167

#	Article	IF	CITATIONS
55	Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Molecular Microbiology, 2002, 46, 1107-1122.	2.5	68
56	Regulation of transcription in Helicobacter pylori: simple systems or complex circuits?. International Journal of Medical Microbiology, 2001, 291, 107-117.	3.6	48
57	Mu-Like Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens. Infection and Immunity, 2001, 69, 2580-2588.	2.2	47
58	Iron-Dependent Transcription of the frpB Gene of Helicobacter pylori Is Controlled by the Fur Repressor Protein. Journal of Bacteriology, 2001, 183, 4932-4937.	2.2	71
59	A common conserved amino acid motif module shared by bacterial and intercellular adhesins: bacterial adherence mimicking cell-cell recognition?. Microbiology (United Kingdom), 2001, 147, 250-252.	1.8	14
60	Complete Genome Sequence of <i>Neisseria meningitidis</i> Serogroup B Strain MC58. Science, 2000, 287, 1809-1815.	12.6	1,083
61	Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science, 2000, 287, 1816-1820.	12.6	1,258
62	The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Molecular Microbiology, 1999, 34, 663-674.	2.5	71
63	Motility of <i>Helicobacter pylori</i> Is Coordinately Regulated by the Transcriptional Activator FlgR, an NtrC Homolog. Journal of Bacteriology, 1999, 181, 593-599.	2.2	129
64	Functional analysis of theHelicobacter pyloriprincipal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription. Molecular Microbiology, 1998, 30, 121-134.	2.5	40
65	7.6 Molecular Genetics of Bordetella Pertussis Virulence. Methods in Microbiology, 1998, 27, 395-406.	0.8	0
66	Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. Journal of Bacteriology, 1997, 179, 4676-4683.	2.2	99
67	Transcriptional analysis of the divergent cagAB genes encoded by the pathogenicity island of Helicobacter pylori. Molecular Microbiology, 1997, 26, 361-372.	2.5	56
68	Genetic Detoxification of Bacterial Toxins. , 1996, 4, 91-110.		0
69	DNA binding of the Bordetella pertussis H1 homolog alters in vitro DNA flexibility. Journal of Bacteriology, 1996, 178, 2982-2985.	2.2	7
70	A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. Journal of Bacteriology, 1996, 178, 4445-4452.	2.2	42
71	Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Molecular Microbiology, 1996, 21, 557-565.	2.5	53
72	The pertussis toxin liberation genes of Bordetella pertussis are transcriptionally linked to the pertussis toxin operon. Infection and Immunity, 1996, 64, 1458-1460.	2.2	8

#	Article	IF	CITATIONS
73	A novel chromatin-forming histone H1 homologue is encoded by a dispensable and growth-regulated gene in Bordetella pertussis. Molecular Microbiology, 1995, 15, 871-881.	2.5	21
74	Response of the bvg regulon of Bordetella pertussis to different temperatures and short-term temperature shifts. Microbiology (United Kingdom), 1995, 141, 2529-2534.	1.8	48
75	Transcriptional regulation in the Chlamydia trachomatis pCT plasmid. Gene, 1995, 154, 93-98.	2.2	25
76	Mutations in the linker region of Bvgs abolish response to environmental signals for the regulation of the virulence factors in bordetella pertussis. Gene, 1995, 155, 147.	2.2	0
77	Bacteriophage T4 gene 28. DNA Sequence, 1995, 5, 199-201.	0.7	Ο
78	Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene, 1994, 150, 123-127.	2.2	31
79	Environmental regulation of virulence factors inBordetellaspecies. BioEssays, 1993, 15, 99-104.	2.5	32
80	Transcriptional analysis of the Chlamydia trachomatis plasmid pCT identifies temporally regulated transcripts, anti-sense RNA and σ70-selected promoters. Molecular Genetics and Genomics, 1993, 237, 318-326.	2.4	27
81	Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen. Journal of General Microbiology, 1993, 139, 1083-1092.	2.3	54
82	Adhesion of Bordetella pertussis to eukaryotic cells requires a time-dependent export and maturation of filamentous hemagglutinin Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9204-9208.	7.1	55
83	DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. Journal of Bacteriology, 1993, 175, 4764-4771.	2.2	25
84	Sequence of the bacteriophage SP01 gene 30. Gene, 1992, 114, 115-119.	2.2	5
85	The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1. Gene, 1992, 118, 109-113.	2.2	18
86	Micro Correspondence. Molecular Microbiology, 1992, 6, 2209-2211.	2.5	26
87	Sequential activation and environmental regulation of virulence genes in Bordetella pertussis EMBO Journal, 1991, 10, 3971-3975.	7.8	125
88	Differential response of the bvg virulence regulon of Bordetella pertussis to MgSO4 modulation. Journal of Bacteriology, 1991, 173, 7401-7404.	2.2	41
89	Bacteriophage SPO1 middle transcripts. Virology, 1991, 180, 716-728.	2.4	10
90	Structural and genetic analysis of the bvg locus in Bordetella species. Molecular Microbiology, 1991, 5, 2481-2491.	2.5	95

#	Article	IF	CITATIONS
91	The bvg-dependent promoters show similar behaviour in different Bordetella species and share sequence homologies. Molecular Microbiology, 1991, 5, 2493-2498.	2.5	21
92	Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6753-6757.	7.1	136
93	Genetic characterization of Bordetella pertussis filamentous haemagglutinin: a protein processed from an unusually large precursor. Molecular Microbiology, 1990, 4, 787-800.	2.5	122
94	Bacteriophage T4 gene 27. Nucleic Acids Research, 1990, 18, 3046-3046.	14.5	5
95	A self-splicing group I intron in the DNA polymerase gene of bacillus subtilis bacteriophage SPO1. Cell, 1990, 63, 417-424.	28.9	87
96	Synthesis, phosphorylation, and nuclear localization of human papillomavirus E7 protein in Schizo-saccharomyces pombe. Gene, 1990, 93, 265-270.	2.2	35
97	Bacteriophage T4 late gene expression: Overlapping promoters direct divergent transcription of the base plate gene cluster. Virology, 1989, 171, 475-483.	2.4	17
98	Characterization of the structural genes for the DNA-binding protein H-NS in Enterobacteriaceae. FEBS Letters, 1989, 244, 34-38.	2.8	28
99	Symmetric transcription of bacteriophage T4 base plate genes. Gene, 1988, 72, 241-245.	2.2	3
100	Statistical evaluation of the coding capacity of complementary DNA strands. Nucleic Acids Research, 1984, 12, 5049-5059.	14.5	9
101	Computer programs for the characterization of protein coding genes. Nucleic Acids Research, 1984, 12, 281-285.	14.5	7
102	Coding capacity of complementary DNA strands. Nucleic Acids Research, 1981, 9, 1499-1518.	14.5	26
103	Motility, Chemotaxis, and Flagella. , 0, , 239-248.		40