FlÃ;via Carvalho Alcantara Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204698/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants, 2022, 11, 617.	2.2	24
2	Loss of laminâ€B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell, 2022, 21, e13521.	3.0	53
3	Astrocytes as a target for <scp>Nogoâ€A</scp> and implications for synapse formation in vitro and in a model of acute demyelination. Glia, 2021, 69, 1429-1443.	2.5	7
4	Ethanol Gestational Exposure Impairs Vascular Development and Endothelial Potential to Control BBB-Associated Astrocyte Function in the Developing Cerebral Cortex. Molecular Neurobiology, 2021, 58, 1755-1768.	1.9	12
5	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain, Behavior, & Immunity - Health, 2020, 7, 100127.	1.3	64
6	Cryopreserved astrocytes maintain biological properties: Support of neuronal survival and differentiation. Journal of Neuroscience Methods, 2020, 343, 108806.	1.3	0
7	Astrocyte glutamate transporters are increased in an early sporadic model of synucleinopathy. Neurochemistry International, 2020, 138, 104758.	1.9	18
8	The Role of Astrocytes in the Development of the Cerebellum. Cerebellum, 2019, 18, 1017-1035.	1.4	39
9	αâ€synuclein oligomers enhance astrocyteâ€induced synapse formation through TGFâ€Î²1 signaling in a Parkinson's disease model. Journal of Neurochemistry, 2019, 150, 138-157.	2.1	27
10	Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Frontiers in Aging Neuroscience, 2019, 11, 59.	1.7	256
11	Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Molecular Neurobiology, 2019, 56, 4653-4679.	1.9	91
12	Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Molecular Neurobiology, 2018, 55, 3660-3675.	1.9	37
13	Heterogeneity in Synaptogenic Profile of Astrocytes from Different Brain Regions. Molecular Neurobiology, 2018, 55, 751-762.	1.9	64
14	Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model. Journal of Neuroscience, 2017, 37, 6797-6809.	1.7	127
15	Derivation of Functional Human Astrocytes from Cerebral Organoids. Scientific Reports, 2017, 7, 45091.	1.6	75
16	Transforming Growth Factor β1/SMAD Signaling Pathway Activation Protects the Intestinal Epithelium from Clostridium difficile Toxin A-Induced Damage. Infection and Immunity, 2017, 85, .	1.0	27
17	Flavonoid Hesperidin Induces Synapse Formation and Improves Memory Performance through the Astrocytic TGF-1 ² 1. Frontiers in Aging Neuroscience, 2017, 9, 184.	1.7	39
18	Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds. Neurochemistry International, 2016, 95, 85-91.	1.9	61

FLÃ;VIA CARVALHO ALCANTARA

#	Article	IF	CITATIONS
19	Na/K-ATPase as a target for anticancer drugs: studies with perillyl alcohol. Molecular Cancer, 2015, 14, 105.	7.9	32
20	Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1Î ² : Implications for Cognitive Impairment in Sepsis. Molecular Neurobiology, 2015, 52, 653-663.	1.9	121
21	LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Frontiers in Cellular Neuroscience, 2014, 8, 296.	1.8	19
22	TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 393.	1.8	67
23	Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia, 2014, 62, 1917-1931.	2.5	89
24	Astrocytic control of neural circuit formation: Highlights on TGF-beta signaling. Neurochemistry International, 2014, 78, 18-27.	1.9	65
25	Glia: dos velhos conceitos Ãs novas funções de hoje e as que ainda virão. Estudos Avancados, 2013, 27, 61-84.	0.2	13
26	Avaliação da proteÃna acÃdica fibrilar glial como marcador da injúria por isquemia-reperfusão hepática. Revista Do Colegio Brasileiro De Cirurgioes, 2013, 40, 215-220.	0.3	0
27	Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells. PLoS ONE, 2013, 8, e62773.	1.1	35
28	Astrocyte-induced Synaptogenesis Is Mediated by Transforming Growth Factor β Signaling through Modulation of d-Serine Levels in Cerebral Cortex Neurons. Journal of Biological Chemistry, 2012, 287, 41432-41445.	1.6	186
29	Activation of MAPK/PI3K/SMAD Pathways by TGF-β1 Controls Differentiation of Radial Glia into Astrocytes in vitro. Developmental Neuroscience, 2012, 34, 68-81.	1.0	55
30	The flavonoids hesperidin and rutin promote neural crest cell survival. Cell and Tissue Research, 2012, 350, 305-315.	1.5	34
31	Effects of the flavonoid hesperidin in cerebral cortical progenitors in vitro: indirect action through astrocytes. International Journal of Developmental Neuroscience, 2012, 30, 303-313.	0.7	38
32	Neuron–Astroglial Interactions in Cell-Fate Commitment and Maturation in the Central Nervous System. Neurochemical Research, 2012, 37, 2402-2418.	1.6	29
33	Sphingosine 1â€phosphateâ€primed astrocytes enhance differentiation of neuronal progenitor cells. Journal of Neuroscience Research, 2012, 90, 1892-1902.	1.3	19
34	Neuron–glia signaling: Implications for astrocyte differentiation and synapse formation. Life Sciences, 2011, 89, 524-531.	2.0	39
35	Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. Journal of Neurochemistry, 2011, 119, 113-123.	2.1	45
36	Hesperidin, a Flavone Glycoside, as Mediator of Neuronal Survival. Neurochemical Research, 2011, 36, 1776-1784.	1.6	51

#	Article	IF	CITATIONS
37	Effects of the flavonoid casticin from Brazilian <i>Croton betulaster</i> in cerebral cortical progenitors in vitro: Direct and indirect action through astrocytes. Journal of Neuroscience Research, 2010, 88, 530-541.	1.3	27
38	Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology. Neurochemical Research, 2010, 35, 955-966.	1.6	30
39	Thyroid hormone receptor Î ² mutation causes severe impairment of cerebellar development. Molecular and Cellular Neurosciences, 2010, 44, 68-77.	1.0	57
40	Neuron-Astroglial Interactions in Cell Fate Commitment in the Central Nervous System. , 2010, , 145-170.		0
41	Effect of thyroid hormone depletion on cultured murine cerebral cortex astrocytes. Neuroscience Letters, 2009, 467, 58-62.	1.0	17
42	Glutamate activates GFAP gene promoter from cultured astrocytes through TGFâ€Î²1 pathways. Journal of Neurochemistry, 2008, 106, 746-756.	2.1	64
43	Lysophosphatidic Acid Receptor-dependent Secondary Effects via Astrocytes Promote Neuronal Differentiation. Journal of Biological Chemistry, 2008, 283, 7470-7479.	1.6	71
44	TGF-β1/SMAD signaling induces astrocyte fate commitmentin vitro: Implications for radial glia development. Glia, 2007, 55, 1023-1033.	2.5	100
45	CHARACTERIZATION OF TGF-Î ² 1 TYPE II RECEPTOR EXPRESSION IN CULTURED CORTICAL ASTROCYTES. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 171.	0.7	9
46	Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor-protein kinase a pathway. Journal of Neuroscience Research, 2005, 80, 341-349.	1.3	43
47	Emerging roles for TGFâ€Î²1 in nervous system development. International Journal of Developmental Neuroscience, 2005, 23, 413-424.	0.7	150
48	Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. European Journal of Neuroscience, 2004, 19, 1721-1730.	1.2	56
49	Role of neuron–glia interactions in nervous system development: highlights on radial glia and astrocytes. Advances in Molecular and Cell Biology, 2003, 31, 97-125.	0.1	1
50	Neuritogenesis Induced by Thyroid Hormone-treated Astrocytes Is Mediated by Epidermal Growth Factor/Mitogen-activated Protein Kinase-Phosphatidylinositol 3-Kinase Pathways and Involves Modulation of Extracellular Matrix Proteins. Journal of Biological Chemistry, 2002, 277, 49311-49318.	1.6	94
51	Differences in the activation of the GFAP gene promoter by prion and viral infections. Molecular Brain Research, 2002, 109, 119-127.	2.5	11
52	Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-β1. European Journal of Neuroscience, 2002, 16, 2059-2069.	1.2	101
53	Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia, 1999, 25, 247-255.	2.5	86
54	Thyroid hormone acting on astrocytes in culture. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 280-282.	0.7	25