Yongfen Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204384/publications.pdf

Version: 2024-02-01

933447 839539 20 355 10 18 citations g-index h-index papers 20 20 20 525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Safe and flexible ion gel based composite electrolyte for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 14132-14140.	10.3	46
2	All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 14847-14855.	10.3	44
3	Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. Journal of Materials Chemistry A, 2020, 8, 23096-23122.	10.3	42
4	Free Mesogen Assisted Assembly of the Star-shaped Liquid-crystalline Copolymer/Polyethylene Oxide Solid Electrolytes for Lithium Ion Batteries. Electrochimica Acta, 2014, 118, 33-40.	5.2	35
5	N-Type Self-Doped Hyperbranched Conjugated Polyelectrolyte as Electron Transport Layer for Efficient Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 50187-50196.	8.0	33
6	Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Advances, 2017, 7, 22728-22734.	3 . 6	27
7	Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small, 2022, 18, e2200679.	10.0	25
8	Self-healing solid polymer electrolyte based on imine bonds for high safety and stable lithium metal batteries. RSC Advances, 2021, 11, 2985-2994.	3 . 6	19
9	Mesogen-controlled ion channel of star-shaped hard-soft block copolymers for solid-state lithium-ion battery. Journal of Polymer Science Part A, 2013, 51, 4341-4350.	2.3	16
10	Design of amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene)-based gel electrolytes for high-performance lithium-ion batteries. Ionics, 2016, 22, 1311-1318.	2.4	12
11	Enhanced conductivity of novel star branched liquid crystalline copolymer based on poly(ethylene) Tj ETQq1 1 0.	.784314 rş	gBŢ/Overlo <mark>ck</mark>
12	Selfâ∈Healing and Flexible Ionic Gel Polymer Electrolyte Based on Reversible Bond for Highâ∈Performance Lithium Metal Batteries. Energy Technology, 0, , 2100749.	3.8	9
13	Water/Alcohol Soluble Thickness-Insensitive Hyperbranched Perylene Diimide Electron Transport Layer Improving the Efficiency of Organic Solar Cells. Polymers, 2019, 11, 655.	4.5	8
14	Preparation of SiO2 grafted polyimidazole solid electrolyte for lithium-ion batteries. Ionics, 2020, 26, 3883-3892.	2.4	6
15	Quasi-three-dimensional self-doped conjugated polyelectrolytes based on a triphenylamine skeleton for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1029-1038.	5.5	6
16	Adjusting the Active Layer Morphology via an Amorphous Acceptor Solid Additive for Efficient and Stable Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2100532.	5.8	5
17	Crosslinked network solid polymer electrolyte with selfâ€healing ability and high stability for lithium metal battery. Polymer International, 2022, 71, 1201-1209.	3.1	5
18	Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. Journal of Materials Science, 2018, 53, 7715-7724.	3.7	3

YONGFEN TONG

#	Article	lF	CITATIONS
19	Diblock conjugated polyelectrolyte electron transport layer modulating the morphology of the active layer for efficient nonfullerene organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 18458-18464.	2.2	3
20	Elastomers uploaded electrospun nanofibrous membrane as solid state polymer electrolytes for lithium-ion batteries. RSC Advances, 2015, 5, 82960-82967.	3.6	2