
Evgeniya Frantsina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Mathematical Model for Calculating the Cetane Number of Diesel Fuel Based on Their Hydrocarbon Composition and Intermolecular Interactions of Mixture Components. Combustion Science and Technology, 2021, 193, 1140-1153.	2.3	3
2	Identification of hydrocarbon compositions of diesel fractions and assessment of their effect on fuel operational characteristics. Petroleum Science and Technology, 2020, 38, 338-344.	1.5	5
3	Studying the process of diesel fuel catalytic dewaxing using the unsteady mathematical model. Petroleum Science and Technology, 2020, 38, 936-944.	1.5	0
4	Influence of technological parameters and hydrogen-containing gas consumption on the efficiency of middle distillates hydrodesulphurization process. Petroleum Science and Technology, 2019, 37, 181-189.	1.5	8
5	Unsteady-state mathematical model of diesel fuels catalytic dewaxing process. Catalysis Today, 2019, 329, 214-220.	4.4	13
6	Intensification of the processes of dehydrogenation and dewaxing of middle distillate fractions by redistribution of hydrogen between the units. Korean Journal of Chemical Engineering, 2018, 35, 337-347.	2.7	10
7	Influence of alkylaromatic hydrocarbons on the efficiency of linear alkylbenzene sulfonic acid synthesis. Chemical Engineering Journal, 2017, 329, 250-261.	12.7	16
8	Increasing the Selectivity of Synthesis Stages for Linear Alkyl Benzenes. Current Organic Synthesis, 2017, 14, 342-352.	1.3	14
9	Development of the Mathematical Model of Diesel Fuel Catalytic Dewaxing Process Taking into Account Factors of Nonstationarity. MATEC Web of Conferences, 2016, 85, 01023.	0.2	3
10	Decreasing the hydrogen-rich gas circulation ratio and service life extension of the C9–C14 alkanes dehydrogenation catalyst. Chemical Engineering Journal, 2015, 282, 224-232.	12.7	12
11	Developing of the mathematical model for controlling the operation of alkane dehydrogenation catalyst in production of linear alkyl benzene. Chemical Engineering Journal, 2014, 238, 129-139.	12.7	31
12	Thermodynamic stability of coke-generating compounds formed on the surface of platinum dehydrogenation catalysts in their oxidation with water. Petroleum Chemistry, 2013, 53, 267-275.	1.4	13
13	Developing a method for increasing the service life of a higher paraffin dehydrogenation catalyst, based on the nonstationary kinetic model of a reactor. Catalysis in Industry, 2012, 4, 110-120.	0.7	12