Daewon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204071/publications.pdf Version: 2024-02-01

DAEWON DADK

#	Article	IF	CITATIONS
1	Preliminary Results of a Reverse Thermal Gel Patch for Fetal Ovine Myelomeningocele Repair. Journal of Surgical Research, 2022, 270, 113-123.	1.6	4
2	Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 3700.	4.1	11
3	Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. Journal of Molecular and Cellular Cardiology, 2022, 169, 84-95.	1.9	7
4	Evaluation of scaffolding, inflammatory response, and wound healing support of a reverse thermal gel for myelomeningocele patching. Journal of Applied Polymer Science, 2021, 138, 50013.	2.6	1
5	Multifunctional Fluorocarbon-conjugated Nanoparticles of Varied Morphologies to Enhance Diagnostic Effects in Breast Cancer. Nano Biomedicine and Engineering, 2021, 13, .	0.9	2
6	Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer. Cancer Research, 2021, 81, 3255-3269.	0.9	37
7	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
8	Serum circulating proteins from pediatric patients with dilated cardiomyopathy cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight, 2021, 6, .	5.0	7
9	Compromised Biomechanical Properties, Cell–Cell Adhesion and Nanotubes Communication in Cardiac Fibroblasts Carrying the Lamin A/C D192G Mutation. International Journal of Molecular Sciences, 2021, 22, 9193.	4.1	5
10	Carbon Nanotubes for Cardiac Applications. RSC Nanoscience and Nanotechnology, 2021, , 223-256.	0.2	1
11	Nanomaterials for Cardiac Tissue Engineering. Molecules, 2020, 25, 5189.	3.8	37
12	Viscoelastic behavior of cardiomyocytes carrying LMNA mutations. Biorheology, 2020, 57, 1-14.	0.4	6
13	Improved Coverage of Mouse Myelomeningocele With a Mussel Inspired Reverse Thermal Gel. Journal of Surgical Research, 2020, 251, 262-274.	1.6	6
14	Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomaterials Science and Engineering, 2020, 6, 1217-1227.	5.2	28
15	Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon, 2020, 6, e03175.	3.2	14
16	An Injectable Reverse Thermal Gel for Minimally Invasive Coverage of Mouse Myelomeningocele. Journal of Surgical Research, 2019, 235, 227-236.	1.6	17
17	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2019, 11, 18671-18680.	8.0	47
18	Novel insights into cardiomyocytes provided by atomic force microscopy. Seminars in Cell and Developmental Biology, 2018, 73, 4-12.	5.0	32

DAEWON PARK

#	Article	IF	CITATIONS
19	3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1530-1537.	4.6	57
20	Injectable Neurotrophic Factor Delivery System Supporting Retinal Ganglion Cell Survival and Regeneration Following Optic Nerve Crush. ACS Biomaterials Science and Engineering, 2018, 4, 3374-3383.	5.2	18
21	Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800079.	4.1	172
22	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Applied Materials & Interfaces, 2017, 9, 31645-31656.	8.0	52
23	Biomimetic Polymers for Cardiac Tissue Engineering. Biomacromolecules, 2016, 17, 1593-1601.	5.4	37
24	A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro. ACS Applied Materials & Interfaces, 2016, 8, 20540-20548.	8.0	18
25	Substantial Differentiation of Human Neural Stem Cells Into Motor Neurons on a Biomimetic Polyurea. Macromolecular Bioscience, 2015, 15, 1206-1211.	4.1	17
26	A heparinâ€mimicking reverse thermal gel for controlled delivery of positively charged proteins. Journal of Biomedical Materials Research - Part A, 2015, 103, 2102-2108.	4.0	17
27	A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Research Letters, 2015, 10, 972.	5.7	54
28	Biocompatible Reverse Thermal Gel Sustains the Release of Intravitreal Bevacizumab In Vivo. , 2014, 55, 469.		77
29	Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 354-369.	3.5	13
30	The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials, 2014, 35, 1924-1931.	11.4	52
31	A Combined Micelle and Poly(Serinol Hexamethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (Urea Delivery System. Macromolecular Bioscience, 2014, 14, 1719-1729.	a)- <i>Co< 4.1</i>	/i>-Poly(<i>1 18</i>
32	Polysulfone/Vanillin Microcapsules for Antibacterial and Aromatic Finishing of Fabrics. Industrial & Engineering Chemistry Research, 2013, 52, 9995-10003.	3.7	41
33	An Antiâ€angiogenic Reverse Thermal Gel as a Drugâ€Delivery System for Ageâ€Related Wet Macular Degeneration. Macromolecular Bioscience, 2013, 13, 464-469.	4.1	27
34	State of the Art of Polysulfone Microcapsules. Current Organic Chemistry, 2013, 17, 22-29.	1.6	6
35	Polysulfone microcapsules with different wall morphology. Journal of Applied Polymer Science, 2013, 129, 1625-1636.	2.6	9
36	Preparation and characterization of polysulfone microcapsules for perfume release. Chemical Engineering Journal, 2012, 179, 394-403.	12.7	107

DAEWON PARK

#	Article	IF	CITATIONS
37	Characterization of Polysulfone and Polysulfone/Vanillin Microcapsules by ¹ H NMR Spectroscopy, Solid-State ¹³ C CP/MAS–NMR Spectroscopy, and N ₂ Adsorption–Desorption Analyses. ACS Applied Materials & Interfaces, 2011, 3, 4420-4430.	8.0	20
38	A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials, 2011, 32, 777-786.	11.4	85
39	Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties. Langmuir, 2010, 26, 9772-9781.	3.5	97
40	Vanillin Release from Polysulfone Macrocapsules. Industrial & Engineering Chemistry Research, 2009, 48, 1562-1565.	3.7	29
41	Quantum mechanical model for Maya Blue. International Journal of Quantum Chemistry, 2008, 108, 1664-1673.	2.0	29