
Daewon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204071/publications.pdf Version: 2024-02-01

DAFWON DADK

#	Article	IF	CITATIONS
1	Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800079.	2.1	172
2	Preparation and characterization of polysulfone microcapsules for perfume release. Chemical Engineering Journal, 2012, 179, 394-403.	6.6	107
3	Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties. Langmuir, 2010, 26, 9772-9781.	1.6	97
4	A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials, 2011, 32, 777-786.	5.7	85
5	Biocompatible Reverse Thermal Gel Sustains the Release of Intravitreal Bevacizumab In Vivo. , 2014, 55, 469.		77
6	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
7	3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1530-1537.	2.3	57
8	A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Research Letters, 2015, 10, 972.	3.1	54
9	The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials, 2014, 35, 1924-1931.	5.7	52
10	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Applied Materials & Interfaces, 2017, 9, 31645-31656.	4.0	52
11	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2019, 11, 18671-18680.	4.0	47
12	Polysulfone/Vanillin Microcapsules for Antibacterial and Aromatic Finishing of Fabrics. Industrial & Engineering Chemistry Research, 2013, 52, 9995-10003.	1.8	41
13	Biomimetic Polymers for Cardiac Tissue Engineering. Biomacromolecules, 2016, 17, 1593-1601.	2.6	37
14	Nanomaterials for Cardiac Tissue Engineering. Molecules, 2020, 25, 5189.	1.7	37
15	Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer. Cancer Research, 2021, 81, 3255-3269.	0.4	37
16	Novel insights into cardiomyocytes provided by atomic force microscopy. Seminars in Cell and Developmental Biology, 2018, 73, 4-12.	2.3	32
17	Quantum mechanical model for Maya Blue. International Journal of Quantum Chemistry, 2008, 108, 1664-1673.	1.0	29
18	Vanillin Release from Polysulfone Macrocapsules. Industrial & Engineering Chemistry Research, 2009, 48, 1562-1565.	1.8	29

DAEWON PARK

#	Article	IF	CITATIONS
19	Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomaterials Science and Engineering, 2020, 6, 1217-1227.	2.6	28
20	An Antiâ€angiogenic Reverse Thermal Gel as a Drugâ€Delivery System for Ageâ€Related Wet Macular Degeneration. Macromolecular Bioscience, 2013, 13, 464-469.	2.1	27
21	Characterization of Polysulfone and Polysulfone/Vanillin Microcapsules by ¹ H NMR Spectroscopy, Solid-State ¹³ C CP/MAS–NMR Spectroscopy, and N ₂ Adsorption–Desorption Analyses. ACS Applied Materials & Interfaces, 2011, 3, 4420-4430.	4.0	20
22	A Combined Micelle and Poly(Serinol Hexamethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (Urea)- <i>Delivery System. Macromolecular Bioscience, 2014, 14, 1719-1729.</i>	Co-Poly 2.1	(<i>N</i> -lsop 18
23	A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro. ACS Applied Materials & Interfaces, 2016, 8, 20540-20548.	4.0	18
24	Injectable Neurotrophic Factor Delivery System Supporting Retinal Ganglion Cell Survival and Regeneration Following Optic Nerve Crush. ACS Biomaterials Science and Engineering, 2018, 4, 3374-3383.	2.6	18
25	Substantial Differentiation of Human Neural Stem Cells Into Motor Neurons on a Biomimetic Polyurea. Macromolecular Bioscience, 2015, 15, 1206-1211.	2.1	17
26	A heparinâ€mimicking reverse thermal gel for controlled delivery of positively charged proteins. Journal of Biomedical Materials Research - Part A, 2015, 103, 2102-2108.	2.1	17
27	An Injectable Reverse Thermal Gel for Minimally Invasive Coverage of Mouse Myelomeningocele. Journal of Surgical Research, 2019, 235, 227-236.	0.8	17
28	Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon, 2020, 6, e03175.	1.4	14
29	Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 354-369.	1.9	13
30	Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 3700.	1.8	11
31	Polysulfone microcapsules with different wall morphology. Journal of Applied Polymer Science, 2013, 129, 1625-1636.	1.3	9
32	Serum circulating proteins from pediatric patients with dilated cardiomyopathy cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight, 2021, 6, .	2.3	7
33	Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. Journal of Molecular and Cellular Cardiology, 2022, 169, 84-95.	0.9	7
34	State of the Art of Polysulfone Microcapsules. Current Organic Chemistry, 2013, 17, 22-29.	0.9	6
35	Viscoelastic behavior of cardiomyocytes carrying LMNA mutations. Biorheology, 2020, 57, 1-14.	1.2	6
36	Improved Coverage of Mouse Myelomeningocele With a Mussel Inspired Reverse Thermal Gel. Journal of Surgical Research, 2020, 251, 262-274.	0.8	6

DAEWON PARK

#	Article	IF	CITATIONS
37	Compromised Biomechanical Properties, Cell–Cell Adhesion and Nanotubes Communication in Cardiac Fibroblasts Carrying the Lamin A/C D192G Mutation. International Journal of Molecular Sciences, 2021, 22, 9193.	1.8	5
38	Preliminary Results of a Reverse Thermal Gel Patch for Fetal Ovine Myelomeningocele Repair. Journal of Surgical Research, 2022, 270, 113-123.	0.8	4
39	Multifunctional Fluorocarbon-conjugated Nanoparticles of Varied Morphologies to Enhance Diagnostic Effects in Breast Cancer. Nano Biomedicine and Engineering, 2021, 13, .	0.3	2
40	Evaluation of scaffolding, inflammatory response, and wound healing support of a reverse thermal gel for myelomeningocele patching. Journal of Applied Polymer Science, 2021, 138, 50013.	1.3	1
41	Carbon Nanotubes for Cardiac Applications. RSC Nanoscience and Nanotechnology, 2021, , 223-256.	0.2	1