
Cyril Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Comprehensive Precipitation of Hydroxyapatites Unraveled by a Combined Kinetic–Thermodynamic Approach. Inorganic Chemistry, 2022, 61, 3296-3308.	4.0	7
2	One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming. Applied Catalysis B: Environmental, 2021, 280, 119417.	20.2	69
3	Au-Modified Pd catalyst exhibits improved activity and stability for NO direct decomposition. Catalysis Science and Technology, 2021, 11, 2908-2914.	4.1	3
4	Development of a thermodynamic approach to assist the control of the precipitation of hydroxyapatites and associated calcium phosphates in open systems. CrystEngComm, 2021, 23, 4857-4870.	2.6	7
5	Synergistic Effect Between Ca 4 V 4 O 14 and Vanadium‣ubstituted Hydroxyapatite in the Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3995-4009.	3.7	3
6	Hydrothermally stable Pd/SiO2@Zr Core@Shell catalysts for diesel oxidation applications. Chemical Engineering Journal, 2021, 425, 130637.	12.7	8
7	Unraveling the Direct Decomposition of NO <i>_x</i> over Keggin Heteropolyacids and Their Deactivation Using a Combination of Gas-IR/MS and In Situ DRIFT Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 22459-22470.	3.1	7
8	Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction. Nanoscale, 2020, 12, 15209-15213.	5.6	22
9	Activation of Câ^'H Bond of Propane by Strong Basic Sites Generated by Bulk Proton Conduction on Vâ€Modified Hydroxyapatites for the Formation of Propene ChemCatChem, 2020, 12, 2506-2521.	3.7	14
10	Comment on "Direct Decomposition of NO _{<i>x</i>} over TiO ₂ Supported Transition Metal Oxides at Low Temperatures― Industrial & Engineering Chemistry Research, 2020, 59, 4835-4837.	3.7	1
11	On the origin of the changes in color of Ag/Al2O3 catalysts during storage. Research on Chemical Intermediates, 2019, 45, 5877-5905.	2.7	4
12	Importance of the Nature of the Active Acid/Base Pairs of Hydroxyapatite Involved in the Catalytic Transformation of Ethanol to <i>n</i> â€Butanol Revealed by <i>Operando</i> DRIFTS. ChemCatChem, 2019, 11, 1765-1778.	3.7	31
13	Selective Catalytic Reduction of NO x over Au/Al2O3: Influence of the Gold Loading on the Promoting Effect of H2 in H2-Assisted C3H6-SCR of NO x. Catalysis Letters, 2018, 148, 539-546.	2.6	4
14	Assessing carbon or tungstates coverage of ZrO2 nanoparticles supported on MWCNT via NOx-TPD. Nano Structures Nano Objects, 2018, 16, 110-119.	3.5	3
15	Incorporation of vanadium into the framework of hydroxyapatites: importance of the vanadium content and pH conditions during the precipitation step. Physical Chemistry Chemical Physics, 2017, 19, 9630-9640.	2.8	21
16	In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis. Inorganic Chemistry, 2017, 56, 9225-9234.	4.0	42
17	Promoting Ag/Al2O3 Performance in Low-Temperature H2-C3H6-SCR by Thermal Pretreatment of Î ³ -Alumina in Water. Catalysis Letters, 2016, 146, 2622-2629.	2.6	6
18	Insights into the accessibility of Zr in Zr/SBA-15 mesoporous silica supports with increasing Zr loadings. Microporous and Mesoporous Materials, 2016, 225, 440-449.	4.4	17

CYRIL THOMAS

#	Article	IF	CITATIONS
19	Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports. Applied Catalysis B: Environmental, 2016, 187, 181-194.	20.2	50
20	Evidence for an H ₂ promoting effect in the selective catalytic reduction of NO _x by propene on Au/Al ₂ O ₃ . Chemical Communications, 2015, 51, 796-799.	4.1	15
21	On an additional promoting role of hydrogen in the H 2 -assisted C 3 H 6 -SCR of NO x on Ag/Al 2 O 3 : A lowering of the temperature of formation–decomposition of the organo-NO x intermediates?. Applied Catalysis B: Environmental, 2015, 162, 454-462.	20.2	26
22	Rational design of a CO2-resistant toluene hydrogenation catalyst based on FT-IR spectroscopy studies. Journal of Catalysis, 2014, 318, 61-66.	6.2	11
23	Insights into the WO _{<i>x</i>} Coverage-Dependent Location and Oxidation State of Noble Metals Supported on Tungstated Oxides: The Case of Rh/WO _{<i>x</i>} –Ce _{0.62} Zr _{0.38} O ₂ . Journal of Physical Chemistry C. 2014, 118, 7386-7397.	3.1	9
24	Organo-NO formation–decomposition as the origin of the changes in the low temperature NO-TPD profile in the presence of n-decane on Ag/γ-Al2O3. Catalysis Communications, 2014, 46, 81-85.	3.3	2
25	Insights into the influence of the Ag loading on Al2O3 in the H2-assisted C3H6-SCR of NO. Applied Catalysis B: Environmental, 2014, 156-157, 192-201.	20.2	30
26	ldentification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. Journal of Physical Chemistry C, 2014, 118, 12744-12757.	3.1	107
27	On the Detrimental Effect of Tungstates on the n-C10-SCR of NO x on Ag/γ-Al2O3. Topics in Catalysis, 2013, 56, 134-139.	2.8	7
28	Mononuclear pseudo-tetrahedral V species of VSiBEA zeolite as the active sites of the selective oxidative dehydrogenation of propane. Journal of Catalysis, 2013, 305, 46-55.	6.2	39
29	On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx. Applied Catalysis B: Environmental, 2013, 142-143, 780-784.	20.2	34
30	Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas. Catalysis Today, 2012, 179, 140-148.	4.4	35
31	On the promoting effect of Au on CO oxidation kinetics of Au–Pt bimetallic nanoparticles supported on SiO2: An electronic effect?. Journal of Catalysis, 2012, 287, 102-113.	6.2	91
32	Should W Surface Density of WOxâ^'ZrO2 Catalysts Be Calculated With Respect To the Specific Surface Area of the Sample or That of ZrO2 Only?. Journal of Physical Chemistry C, 2011, 115, 2253-2256.	3.1	21
33	NO _{<i>x</i>} -TPD as a Tool to Estimate the Accessible Zirconia Surface of ZrO ₂ -Containing Materials. Journal of Physical Chemistry C, 2010, 114, 9731-9738.	3.1	24
34	Surface species structure and activity in NO decomposition of an anatase-supported V–O–Mo catalyst. Catalysis Today, 2008, 137, 273-277.	4.4	6
35	On the reactivity of NO/N2 mixtures with aluminum surfaces: A combined PM-IRRAS and QCM investigation. Surface Science, 2008, 602, 283-290.	1.9	6
36	Evidence for the facile formation of nitrogen-containing compounds from NOx and propene species on tungstated zirconia-based catalysts: Are these compounds active or spectator species in the selective catalytic reduction of NOx by C3H6?. Journal of Catalysis, 2008, 259, 240-249.	6.2	5

CYRIL THOMAS

#	Article	IF	CITATIONS
37	Reactivity of a Hydroxylated Alumina Surface in the Presence of NO Diluted in N ₂ :  A PM-IRRAS in Situ Investigation. Journal of Physical Chemistry C, 2008, 112, 2964-2971.	3.1	14
38	Chapter 5 A there-function model reaction for designing DeNOx catalysts. Studies in Surface Science and Catalysis, 2007, , 145-173.	1.5	6
39	Calibrated Co3O4 nanoparticles patterned in SBA-15 silicas: Accessibility and activity for CO oxidation. Catalysis Communications, 2007, 8, 2105-2109.	3.3	30
40	Evidence for Rh electron-deficient atoms (Rhδ+) as the catalytic species for CO oxidation when supported on Ce0.68Zr0.32O2: A combined N2-FTIR, benzene hydrogenation, and kinetic study. Journal of Catalysis, 2007, 247, 34-42.	6.2	11
41	On the kinetics of CO oxidation by O2 over RhI(CO)2 catalytic species anchored to a zeolitic support. Topics in Catalysis, 2007, 42-43, 357-361.	2.8	1
42	Influence of the nature of the reducible support on CO oxidation kinetics of supported Rhδ+ catalysts: SnO2 versus Ce0.68Zr0.32O2. Topics in Catalysis, 2007, 42-43, 363-366.	2.8	2
43	CO- and N2-FTIR characterisation of oxidised Rh species supported on Ce0.68Zr0.32O2. Physical Chemistry Chemical Physics, 2006, 8, 3732-3740.	2.8	11
44	On the Clarification of the IR Stretching Vibration Assignment of Adsorbed N2on Rh0and Rhδ+Surface Atoms of Supported Rh Crystallites. Journal of Physical Chemistry B, 2006, 110, 10075-10081.	2.6	7
45	Influence of the nature of the noble metal on the lean C3H6-assisted decomposition of NO on Ce0.68Zr0.32O2-supported catalysts. Journal of Molecular Catalysis A, 2006, 249, 71-79.	4.8	23
46	On the promotional effect of Pd on the propene-assisted decomposition of NO on chlorinated Ce0.68Zr0.32O2. Applied Catalysis B: Environmental, 2006, 63, 201-214.	20.2	31
47	On the radical cracking of -propylbenzene to ethylbenzene or toluene over Sn/AlO?Cl catalysts under reforming conditions. Journal of Catalysis, 2005, 230, 255-268.	6.2	14
48	On the role of organic nitrogen-containing species as intermediates in the hydrocarbon-assisted SCR of NOx. Applied Catalysis B: Environmental, 2004, 54, 69-84.	20.2	64
49	NO _x Reduction over CeO ₂ –ZrO ₂ Supported Iridium Catalyst in the Presence of Propanol. Topics in Catalysis, 2004, 30/31, 97-101.	2.8	19
50	A New Approach in the Kinetic Modelling of Three-Way Catalytic Reactions. Topics in Catalysis, 2004, 30/31, 311-317.	2.8	13
51	Simulation of the transient CO oxidation over Rh0/SiO2 and Rhx+/Ce0.68Zr0.32O2 catalysts. Journal of Catalysis, 2004, 224, 269-277.	6.2	20
52	Proposal for a common reactive adsorbate for ethylbenzene and indenic compounds in the conversion of n-propylbenzene over a precoked silica-supported platinum catalyst. Journal of Catalysis, 2003, 218, 411-418.	6.2	3
53	Kinetics and Mechanisms of n-Propylbenzene Hydrodealkylation Reactions over Pt(Sn)/SiO2 and (Cl–)Al2O3 Catalysts in Reforming Conditions. Journal of Catalysis, 2002, 210, 431-444.	6.2	12
54	Title is missing!. Catalysis Letters, 2001, 77, 193-195.	2.6	13

CYRIL THOMAS

#	Article	IF	CITATIONS
55	Title is missing!. Catalysis Letters, 1999, 58, 33-35.	2.6	16
56	Deuterium Tracer Studies on Hydrotreating Catalysts. 2. Contribution of the Hydrogen of the Alumina Support to H-D Exchange. Journal of Catalysis, 1998, 179, 495-502.	6.2	31
57	Study on the role of platinum in PtMo/Al2O3 for hydrodesulfurization of dibenzothiophene. Studies in Surface Science and Catalysis, 1997, 112, 171-178.	1.5	5
58	Deuterium Tracer Studies on Hydrotreating Catalysts—Isotopic Exchange between Hydrogen and Hydrogen Sulfide on Sulfided NiMo/Al2O3. Journal of Catalysis, 1997, 167, 1-11.	6.2	45
59	Dissociation of dihydrogen and hydrogen sulfide over a sulfided NiMo-alumina catalyst as evidenced by D2S-H2 isotopic exchange. Catalysis Letters, 1995, 34, 375-378.	2.6	8
60	Non-Thermal Plasma Assisted Catalytic NOx Remediation from a Lean Model Exhaust. , 0, , .		9
61	Successive Strong Electrostatic Adsorptions of [RhCl6]3– on Tungstated-Ceria as an Original Approach to Preserve Rh Clusters From Sintering Under High-Temperature Reduction. Journal of Physical Chemistry C, 0, , .	3.1	0