
Khurram Munir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9203978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 2017, 92, 70-96.	3.8	406
2	Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 2021, 6, 836-879.	8.6	192
3	Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 505-523.	2.6	123
4	Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomaterialia, 2019, 96, 1-19.	4.1	113
5	Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia, 2020, 102, 493-507.	4.1	93
6	Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrasonics Sonochemistry, 2018, 45, 133-149.	3.8	89
7	Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 10-25.	2.6	87
8	Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. Journal of Magnesium and Alloys, 2020, 8, 269-290.	5.5	87
9	Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomaterialia, 2019, 87, 273-284.	4.1	85
10	Quantitative Analyses of MWCNTâ€ī Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Advanced Engineering Materials, 2015, 17, 1660-1669.	1.6	78
11	Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99, 384-397.	5.4	77
12	Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 224-234.	1.5	75
13	Calcium Phosphate-Based Composite Coating by Micro-Arc Oxidation (MAO) for Biomedical Application: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 392-416.	6.8	55
14	Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. Journal of Alloys and Compounds, 2020, 828, 154461.	2.8	52
15	Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Acta Biomaterialia, 2017, 53, 549-558.	4.1	50
16	Deterioration of the Strong sp ² Carbon Network in Carbon Nanotubes during the Mechanical Dispersion Processing—A Review. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 347-366.	6.8	42
17	Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3, 122-138.	1.3	41
18	Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a l² type Ti–Ta–Hf–Zr alloy. RSC Advances, 2017, 7, 12309-12317.	1.7	37

Khurram Munir

#	Article	IF	CITATIONS
19	Mechanical and corrosion properties of graphene nanoplatelet–reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications. Journal of Magnesium and Alloys, 2022, 10, 458-477.	5.5	33
20	Titanium-niobium pentoxide composites for biomedical applications. Bioactive Materials, 2016, 1, 127-131.	8.6	32
21	An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Scientific Reports, 2018, 8, 5737.	1.6	32
22	Role of Process Control Agent in the Synthesis of Multiâ€Walled Carbon Nanotubes Reinforced Titanium Metal Matrix Powder Mixtures. Advanced Engineering Materials, 2016, 18, 294-303.	1.6	27
23	Mechanical and corrosion properties of extruded Mg–Zr–Sr alloys for biodegradable implant applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142192.	2.6	24
24	Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. Journal of Magnesium and Alloys, 2020, 9, 895-895.	5.5	23
25	Reinforcing capability of multiwall carbon nanotubes in alumina ceramic hybrid nanocomposites containing zirconium oxide nanoparticles. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105018.	1.7	20
26	Selective laser melting in biomedical manufacturing. , 2020, , 235-269.		19
27	Chemical and structural analyses of the graphene nanosheet/alumina ceramic interfacial region in rapidly consolidated ceramic nanocomposites. Journal of Composite Materials, 2018, 52, 417-428.	1.2	17
28	Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coatings. Surface and Coatings Technology, 2018, 333, 71-80.	2.2	16
29	Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications. Journal of Alloys and Compounds, 2021, 887, 161379.	2.8	14
30	Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Acta Biomaterialia, 2022, 149, 387-398.	4.1	10
31	Titanium Alloys, Including Nitinol. , 2020, , 229-247.		4
32	Surface modifications of metallic biomaterials. , 2020, , 387-424.		3
33	Titanium alloys. , 2021, , 157-187.		3
34	Microscopic Analysis of TiB2 Formation Mechanism in Al-Ti-B Alloy. Microscopy and Microanalysis, 2018, 24, 2262-2263.	0.2	2
35	Powder metallurgy in manufacturing of medical devices. , 2020, , 159-190.		2
36	Introduction to biomedical manufacturing. , 2020, , 3-29.		2

36 Introduction to biomedical manufacturing. , 2020, , 3-29.

#	Article	IF	CITATIONS
37	Biodegradable alloys. , 2021, , 189-228.		0