Mohamad Ridzwan Ishak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920362/publications.pdf Version: 2024-02-01

		44042	53190
120	7,804	48	85
papers	citations	h-index	g-index
121	121	121	4393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 2018, 181, 1038-1051.	5.1	384
2	A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 2015, 1-16.	1.2	359
3	Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 2018, 202, 186-202.	5.1	342
4	Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers, 2015, 7, 1106-1124.	2.0	335
5	Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres. Journal of Bionic Engineering, 2016, 13, 426-435.	2.7	268
6	A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites, 2017, 46, 119-136.	0.9	231
7	Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 2016, 53, 326-336.	1.4	228
8	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	2.0	208
9	Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 2021, 13, 1047.	2.0	195
10	Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Composite Structures, 2016, 148, 59-73.	3.1	194
11	Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers, 2013, 91, 699-710.	5.1	191
12	Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules, 2019, 123, 379-388.	3.6	191
13	Nanocrystalline Cellulose as Reinforcement for Polymeric Matrix Nanocomposites and its Potential Applications: A Review. Current Analytical Chemistry, 2018, 14, 203-225.	0.6	190
14	Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers, 2021, 13, 423.	2.0	173
15	Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources, 2017, 12, 8734-8754.	0.5	163
16	Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 533-549.	8.2	157
17	Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 2016, 146, 36-45.	5.1	150
18	Sugar palm (<i>Arenga pinnata</i> [<i>Wurmb</i> .] <i>Merr</i>) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polymer Composites, 2020, 41, 459-467.	2.3	129

#	Article	IF	CITATIONS
19	Characterization of sugar palm (Arenga pinnata) fibres. Journal of Thermal Analysis and Calorimetry, 2012, 109, 981-989.	2.0	125
20	Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose, 2016, 23, 2905-2916.	2.4	114
21	Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers, 2021, 13, 1701.	2.0	101
22	A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity. BioResources, 2014, 10, .	0.5	100
23	Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 2016, 89, 575-581.	3.6	100
24	A decision-making model for selecting the most appropriate natural fiber – Polypropylene-based composites for automotive applications. Journal of Composite Materials, 2016, 50, 543-556.	1.2	99
25	Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. Journal of Biobased Materials and Bioenergy, 2020, 14, 234-248.	0.1	94
26	Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture, 2015, 113, 116-127.	3.7	93
27	Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyurethane. Journal of Natural Fibers, 2018, 15, 251-261.	1.7	88
28	Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers, 2021, 13, 1917.	2.0	88
29	The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. Journal of Polymers and the Environment, 2018, 26, 1520-1527.	2.4	87
30	Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. IOP Conference Series: Materials Science and Engineering, 2010, 11, 012006.	0.3	82
31	Combined Multi-criteria Evaluation Stage Technique as an Agro Waste Evaluation Indicator for Polymeric Composites: Date Palm Fibers as a Case Study. BioResources, 2014, 9, .	0.5	82
32	Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. International Journal of Polymer Science, 2020, 2020, 1-15.	1.2	80
33	Integration of <scp>TRIZ</scp> , morphological chart and <scp>ANP</scp> method for development of <scp>FRP</scp> composite portable fire extinguisher. Polymer Composites, 2020, 41, 2917-2932.	2.3	78
34	Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers, 2015, 16, 153-163.	1.1	75
35	The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiberâ€reinforced vinyl ester composites. Polymer Composites, 2018, 39, 274-287.	2.3	67
36	Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers, 2021, 13, 3365.	2.0	67

#	Article	IF	CITATIONS
37	A Model for Evaluating and Determining the Most Appropriate Polymer Matrix Type for Natural Fiber Composites. International Journal of Polymer Analysis and Characterization, 2015, 20, 191-205.	0.9	64
38	Selecting Natural Fibers for Bio-Based Materials with Conflicting Criteria. American Journal of Applied Sciences, 2015, 12, 64-71.	0.1	63
39	A Review on Roselle Fiber and Its Composites. Journal of Natural Fibers, 2016, 13, 10-41.	1.7	62
40	Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: Degradation and water-barrier properties. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012006.	0.3	62
41	Flax and sugar palm reinforced epoxy composites: effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties. Materials Research Express, 2019, 6, 105331.	0.8	62
42	Effect of Sugar Palm-derived Cellulose Reinforcement on the Mechanical and Water Barrier Properties of Sugar Palm Starch Biocomposite Films. BioResources, 2016, 11, .	0.5	60
43	Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings, 2021, 11, 1355.	1.2	60
44	Physical, Mechanical, and Morphological Properties of Woven Kenaf/Polymer Composites Produced Using a Vacuum Infusion Technique. International Journal of Polymer Science, 2015, 2015, 1-10.	1.2	53
45	Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability, 2021, 13, 4441.	1.6	53
46	Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International Journal of Biological Macromolecules, 2021, 193, 1587-1599.	3.6	53
47	Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers, 2022, 14, 920.	2.0	53
48	Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers and Polymers, 2017, 18, 940-947.	1.1	52
49	The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1001-1008.	1.1	50
50	Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers and Polymers, 2021, 22, 793-803.	1.1	50
51	Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. IOP Conference Series: Materials Science and Engineering, 2010, 11, 012015.	0.3	46
52	Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites. International Journal of Polymer Science, 2016, 2016, 1-6.	1.2	43
53	Effect of Organo-Modified Nanoclay on the Mechanical Properties of Sugar Palm Fiber-reinforced Polyester Composites. BioResources, 2018, 13, .	0.5	43
54	Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses. Polymers, 2021, 13, 620.	2.0	42

#	Article	IF	CITATIONS
55	Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites. Polymers, 2022, 14, 2140.	2.0	42
56	Mechanical properties of hybrid glass/sugar palm fibre reinforced unsaturated polyester composites. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1394-1403.	2.0	40
57	Effect of Plasticizer Type and Concentration on Dynamic Mechanical Properties of Sugar Palm Starch–Based Films. International Journal of Polymer Analysis and Characterization, 2015, 20, 627-636.	0.9	40
58	Influence of Fiber Content on Mechanical and Morphological Properties of Woven Kenaf Reinforced PVB Film Produced Using a Hot Press Technique. International Journal of Polymer Science, 2016, 2016, 1-11.	1.2	39
59	Reflections on Local Community Identity by Evaluating Heritage Sustainability Protection in Jugra, Selangor, Malaysia. Sustainability, 2021, 13, 8705.	1.6	38
60	Material Characterization of Roselle Fibre ([i]Hibiscus sabdariffa [/i]L.) as Potential Reinforcement Material for Polymer Composites. Fibres and Textiles in Eastern Europe, 2015, 23, 23-30.	0.2	37
61	Dynamic mechanical properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Polymer Composites, 2019, 40, 1329-1334.	2.3	36
62	Effect of Alkalization on Mechanical Properties of Water Hyacinth Fibers-Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 446-451.	1.9	34
63	Sugar Palm Fibre and its Composites: A Review of Recent Developments. BioResources, 2016, 11, .	0.5	34
64	Flexural and Compressive Properties of Hybrid Kenaf/Silica Nanoparticles in Epoxy Composite. Procedia Chemistry, 2016, 19, 955-960.	0.7	34
65	Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Applied Sciences (Switzerland), 2021, 11, 2061.	1.3	34
66	Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polymer Bulletin, 2023, 80, 1059-1084.	1.7	33
67	Alkali Treatment of Screw Pine (<i>Pandanus Odoratissimus</i>) Fibers and Its Effect on Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 12-18.	1.9	32
68	Mechanical and Thermal Properties of Kenaf Reinforced Thermoplastic Polyurethane (TPU)-Natural Rubber (NR) Composites. Fibers and Polymers, 2018, 19, 446-451.	1.1	32
69	Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm Component: A Review on Recent Progress and Its Mechanical Properties. Polymers, 2021, 13, 1341.	2.0	30
70	Chemical Composition and FT-IR Spectra of Sugar Palm (<i>Arenga pinnata</i>) Fibers Obtained from Different Heights. Journal of Natural Fibers, 2013, 10, 83-97.	1.7	28
71	Creep test rig for cantilever beam: Fundamentals, prospects and present views. Journal of Mechanical Engineering and Sciences, 2020, 14, 6869-6887.	0.3	27
72	Mechanical Properties of Screw Pine (Pandanus Odoratissimus) Fibers—Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 500-506.	1.9	25

Mohamad Ridzwan Ishak

#	Article	IF	CITATIONS
73	Impregnation modification of sugar palm fibres with phenol formaldehyde and unsaturated polyester. Fibers and Polymers, 2013, 14, 250-257.	1.1	23
74	Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure. Advances in Civil Engineering, 2020, 2020, 1-10.	0.4	23
75	Potential of Flax Fiber Reinforced Biopolymer Composites for Cross-Arm Application in Transmission Tower: A Review. Fibers and Polymers, 2022, 23, 853-877.	1.1	23
76	Characteristics of <i>Eucheuma cottonii</i> waste from East Malaysia: physical, thermal and chemical composition. European Journal of Phycology, 2017, 52, 200-207.	0.9	22
77	Mechanical and Thermal Properties of Roselle Fibre Reinforced Vinyl Ester Composites. BioResources, 2016, 11, .	O.5	21
78	Dynamic Mechanical Analysis of Treated and Untreated Sugar Palm Fibre-based Phenolic Composites. BioResources, 2017, 12, .	0.5	21
79	Effect of Surface Treatment on the Mechanical Properties of Sugar Palm/Glass Fiber-reinforced Thermoplastic Polyurethane Hybrid Composites. BioResources, 2017, 13, .	O.5	21
80	Seaweeds as Renewable Sources for Biopolymers and its Composites: A Review. Current Analytical Chemistry, 2018, 14, 249-267.	0.6	20
81	IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1375-1383.	2.0	19
82	The effect of winding angles on crushing behavior of filament wound hollow kenaf yarn fibre reinforced unsaturated polyester composites. Fibers and Polymers, 2015, 16, 2266-2275.	1.1	19
83	The Effect of Customized Woven and Stacked Layer Orientation on Tensile and Flexural Properties of Woven Kenaf Fibre Reinforced Epoxy Composites. International Journal of Polymer Science, 2016, 2016, 1-11.	1.2	19
84	Effect of Treatments on the Physical and Morphological Properties of SPF/Phenolic Composites. Journal of Natural Fibers, 2017, 14, 645-657.	1.7	19
85	Hybrid and Nonhybrid Laminate Composites of Sugar Palm and Glass Fibre-Reinforced Polypropylene: Effect of Alkali and Sodium Bicarbonate Treatments. International Journal of Polymer Science, 2019, 2019, 1-12.	1.2	18
86	Rheological and Morphological Properties of Oil Palm Fiber-Reinforced Thermoplastic Composites for Fused Deposition Modeling (FDM). Polymers, 2021, 13, 3739.	2.0	18
87	Lateral crushing properties of non-woven kenaf (mat)-reinforced epoxy composite hexagonal tubes. International Journal of Precision Engineering and Manufacturing, 2016, 17, 965-972.	1.1	15
88	Effect of Fibre Loading on the Physical, Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Vinyl Ester Composites. Fibers and Polymers, 2019, 20, 1077-1084.	1.1	15
89	Impacts of Photovoltaic Distributed Generation Location and Size on Distribution Power System Network. International Journal of Power Electronics and Drive Systems, 2018, 9, 905.	0.5	15
90	Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading. IOP Conference Series: Materials Science and Engineering, 2015, 100, 012055.	0.3	14

#	Article	IF	CITATIONS
91	Mechanical, Interfacial and Thermal Properties of Silica Aerogel-Infused Flax/Epoxy Composites. International Polymer Processing, 2021, 36, 53-59.	0.3	14
92	Effect of Silica Aerogel Additive on Mechanical Properties of the Sugar Palm Fiber-Reinforced Polyester Composites. International Journal of Polymer Science, 2019, 2019, 1-4.	1.2	13
93	Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading. Journal of Renewable Materials, 2017, , .	1.1	10
94	Physical properties of silane-treated sugar palm fiber reinforced thermoplastic polyurethane composites. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012047.	0.3	10
95	Mathematical Modeling and Analysis of Tribological Properties of AA6063 Aluminum Alloy Reinforced with Fly Ash by Using Response Surface Methodology. Crystals, 2020, 10, 403.	1.0	10
96	Fire Retardant Performance of Rice Husk Ash-Based Geopolymer Coated Mild Steel - A Factorial Design and Microstructure Analysis. Materials Science Forum, 0, 841, 48-54.	0.3	9
97	Energy absorption capacities of kenaf fibre-reinforced epoxy composite elliptical cones with circumferential holes. Fibers and Polymers, 2017, 18, 1187-1192.	1.1	9
98	Mechanical properties of kenaf fiber thermoplastic polyurethane-natural rubber composites. Polimery, 2018, 63, 524-530.	0.4	9
99	Advanced Composite in Aerospace Applications: Opportunities, Challenges, and Future Perspective. , 2022, , 471-498.		9
100	Dimensional stability of pineapple leaf fibre reinforced phenolic composites. , 2017, , .		8
101	Influence of resin system on the energy absorption capability and morphological properties of plain woven kenaf composites. IOP Conference Series: Materials Science and Engineering, 2015, 100, 012053.	0.3	7
102	Effect of Soil Burial on Physical, Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Vinyl Ester Composites. Fibers and Polymers, 2019, 20, 1893-1899.	1.1	7
103	Experimental Investigation on the Mechanical Properties of a Sandwich Structure Made of Flax/Class Hybrid Composite Facesheet and Honeycomb Core. International Journal of Polymer Science, 2021, 2021, 1-10.	1.2	7
104	Hybridization of TRIZ and CAD-analysis at the conceptual design stage International Journal of Computer Integrated Manufacturing, 2019, 32, 890-899.	2.9	6
105	Thermal and physicochemical properties of sugar palm fibre treated with borax. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012038.	0.3	5
106	Water absorption analysis on impregnated kenaf with nanosilica for epoxy/kenaf composite. IOP Conference Series: Materials Science and Engineering, 0, 405, 012013.	0.3	5
107	An investigation on longitudinal residual strains distribution of thin-walled press-braked cold formed steel sections using 3D FEM technique. Heliyon, 2018, 4, e00937.	1.4	5
108	Influence of a Silica Aerogel Filler on the Mechanical, Thermal, and Physical Properties of Flax/Epoxy Composite. Mechanics of Composite Materials, 2022, 58, 271-282.	0.9	5

#	Article	IF	CITATIONS
109	Tensile Properties of Kenaf Yarn Fibre Reinforced Unsaturated Polyester Composites at Different Fibre Orientations. Applied Mechanics and Materials, 0, 564, 412-417.	0.2	4
110	On the Effects of Geometrical Shapes in Failure Modes in Natural – Conventional Fiber Reinforced Composite Tube: A Review. Current Analytical Chemistry, 2018, 14, 241-248.	0.6	4
111	Crushing behavior of kenaf fiber/wooden stick reinforced epoxy hybrid "green―composite elliptical tubes. Polimery, 2018, 63, 436-443.	0.4	3
112	Investigation on the flexural properties of nanofillers loading on the Jute/Carbon/PLA nanocomposites. Journal of Mechanical Engineering and Sciences, 2020, 14, 7424-7433.	0.3	2
113	Kenaf Fibre: Its Potential and Review on Bending Fatigue of Hollow Shaft Composites. Applied Mechanics and Materials, 0, 629, 395-398.	0.2	1
114	Comparative Investigation on the Failure Modes of Natural Kenaf/Epoxy Reinforced Composite Hexagonal Tubes. Key Engineering Materials, 0, 709, 7-10.	0.4	1
115	Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites. AIP Conference Proceedings, 2017, , .	0.3	1
116	A Review on the Self-Energize Structural Health Monitoring (SHM) in Vertical Axis Wind Turbine (VAWT) System. Applied Mechanics and Materials, 0, 564, 157-163.	0.2	0
117	Experimental Quasi-Static Axial Crushing of Non-Woven Kenaf Fibre/Epoxy Hexagonal Composite Tubes. Applied Mechanics and Materials, 0, 564, 361-365.	0.2	0
118	Chapter 4. Natural Fibre-reinforced Thermoplastic Starch Composites. RSC Green Chemistry, 2015, , 109-142.	0.0	0
119	Quasi-static crush behaviour of environmentally friendly kenaf/wool epoxy composites elliptical tube. Journal of Mechanical Engineering and Sciences, 2018, 12, 3671-3688.	0.3	0
120	Effect of impregnation on hybrid mesoporous silica / kenaf reinforced epoxy composites in term of flexural, compressive and water absorption properties. Journal of Mechanical Engineering and Sciences, 2020, 14, 7528-7539.	0.3	0