
Gilles Buchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92032/publications.pdf Version: 2024-02-01

CILLES RUCHS

#	Article	IF	CITATIONS
1	Metallic carbon nanotube quantum dots with broken symmetries as a platform for tunable terahertz detection. Applied Physics Reviews, 2021, 8, .	11.3	5
2	Certification of spin-based quantum simulators. Physical Review A, 2020, 101, .	2.5	0
3	Compact, UAV compatible, broadband, uncooled Spectrometer for multi-species atmospheric gas analysis. , 2020, , .		Ο
4	Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis. , 2019, , .		1
5	Synthesis of Quantum Antennas for Shaping Field Correlations. Physical Review Applied, 2018, 9, .	3.8	18
6	Confined electron and hole states in semiconducting carbon nanotube sub-10â€ [–] nm artificial quantum dots. Carbon, 2018, 132, 304-311.	10.3	5
7	Nuclear spin decoherence time in MEMS atomic vapor cells for applications in quantum technologies. AIP Conference Proceedings, 2018, , .	0.4	1
8	MEMS atomic vapor cells for gyroscope applications. , 2017, , .		4
9	Shaping field correlation with entangled quantum antennas. , 2017, , .		1
10	Repetition rate stabilization of an optical frequency comb based on solid-state laser technology with an intra-cavity electro-optic modulator. Optics Express, 2017, 25, 2215.	3.4	8
11	Efficient carrier-envelope offset frequency stabilization through gain modulation via stimulated emission. Optics Letters, 2016, 41, 376.	3.3	12
12	Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver. Optics Express, 2015, 23, 32441.	3.4	27
13	9.6 GHz ultra-low phase noise signal generation from a diode-pumped solid-state laser. , 2015, , .		0
14	Radiation hard mode-locked laser suitable as a spaceborne frequency comb. Optics Express, 2015, 23, 9890.	3.4	17
15	Identifying signatures of photothermal current in a double-gated semiconducting nanotube. Nature Communications, 2014, 5, 4987.	12.8	11
16	Fast and Efficient Photodetection in Nanoscale Quantum-Dot Junctions. Nano Letters, 2012, 12, 5740-5743.	9.1	51
17	Defect-induced multicomponent electron scattering in single-walled carbon nanotubes. Physical Review B, 2011, 83, .	3.2	16
18	Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy. Journal of Applied Physics, 2011, 110, .	2.5	15

GILLES BUCHS

#	Article	IF	CITATIONS
19	Modifying the electronic structure of semiconducting single-walled carbon nanotubes byAr+ion irradiation. Physical Review B, 2009, 79, .	3.2	42
20	Electron Scattering in Intrananotube Quantum Dots. Physical Review Letters, 2009, 102, 245505.	7.8	19
21	Defect-induced negative differential resistance in single-walled carbon nanotubes. Applied Physics Letters, 2008, 93, 073115.	3.3	14
22	Creation and STM/STS investigations of hydrogen ions induced defects on single-walled carbon nanotubes. Journal of Physics: Conference Series, 2007, 61, 160-165.	0.4	1
23	Scanning tunneling microscopy investigations of hydrogen plasma-induced electron scattering centers on single-walled carbon nanotubes. Applied Physics Letters, 2007, 90, 013104.	3.3	20
24	Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption. New Journal of Physics, 2007, 9, 275-275.	2.9	33
25	Growth and characterization of single quantum dots emitting at 1300 nm. Applied Physics Letters, 2005, 86, 101908.	3.3	153