
Kazuki Shibanuma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9203127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale modelling strategy for predicting fatigue lives and limits of steels based on a generalised evaluation method of grain boundaries effects. International Journal of Fatigue, 2022, 158, 106749.	2.8	6
2	A model of cleavage crack propagation in a BCC polycrystalline solid based on the extended finite element method. Acta Materialia, 2019, 176, 232-241.	3.8	15
3	Contribution of grain size to resistance against cleavage crack propagation in ferritic steel. Acta Materialia, 2019, 177, 96-106.	3.8	28
4	Underwater burst tests for evaluating unstable ductile crack arrestability in offshore pipelines. Engineering Fracture Mechanics, 2018, 195, 142-161.	2.0	5
5	Local stress in the vicinity of the propagating cleavage crack tip in ferritic steel. Materials and Design, 2018, 144, 361-373.	3.3	22
6	Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth. Materials and Design, 2018, 139, 269-282.	3.3	29
7	A strategy to predict the fracture toughness of steels with a banded ferrite–pearlite structure based on the micromechanics of brittle fracture initiation. Acta Materialia, 2018, 144, 386-399.	3.8	34
8	Brittle crack propagation/arrest behavior in steel plate – Part III: Discussions on arrest design. Engineering Fracture Mechanics, 2018, 190, 104-119.	2.0	13
9	Crack tip opening angle during unstable ductile crack propagation of a high-pressure gas pipeline. Engineering Fracture Mechanics, 2018, 204, 434-453.	2.0	29
10	A model to evaluate unstable ductile crack arrestability of offshore pipeline. Engineering Fracture Mechanics, 2017, 178, 126-147.	2.0	5
11	Investigation of Micro-crack Initiation as a Trigger of Cleavage Fracture in Ferrite-pearlite Steels. ISIJ International, 2017, 57, 365-373.	0.6	5
12	3D Observation of Micro-cracks as Cleavage Fracture Initiation Site in Ferrite-pearlite Steel. ISIJ International, 2017, 57, 746-754.	0.6	7
13	Multiscale Model Synthesis to Clarify the Relationship between Microstructures of Steel and Macroscopic Brittle Crack Arrest Behavior - Part II: Application to Crack Arrest Test. ISIJ International, 2016, 56, 350-358.	0.6	11
14	Multiscale Model Synthesis to Clarify the Relationship between Microstructures of Steel and Macroscopic Brittle Crack Arrest Behavior - Part I: Model Presentation. ISIJ International, 2016, 56, 341-349.	0.6	14
15	Underwater Pipe Rupture disk Tests Simulating Fractures in Offshore Pipelines and Development of Numerical Model for Gas Decompression. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2016, 23, 115-128.	0.2	0
16	A new model to simulate crack arrest behavior in steel plates used for naval structures. , 2016, , .		0
17	Numerical model for unstable ductile crack propagation and arrest in pipelines using finite difference method. Engineering Fracture Mechanics, 2016, 162, 179-192.	2.0	11
18	Brittle crack propagation/arrest behavior in steel plate – Part II: Experiments and model validation. Engineering Fracture Mechanics, 2016, 162, 341-360.	2.0	32

ΚΑΖUKI SHIBANUMA

#	Article	IF	CITATIONS
19	Brittle crack propagation/arrest behavior in steel plate – Part I: Model formulation. Engineering Fracture Mechanics, 2016, 162, 324-340.	2.0	38
20	Experimental and numerical investigation on relationship between grain size and arrest toughness in steels. Procedia Structural Integrity, 2016, 2, 2230-2237.	0.3	0
21	Monte Carlo Simulation to Predict Fracture Initiation in Mild Steel. Procedia Structural Integrity, 2016, 2, 2495-2503.	0.3	0
22	Measurement of local brittle fracture stress for dynamic crack propagation in steel. Procedia Structural Integrity, 2016, 2, 395-402.	0.3	2
23	Development of New Formulation and Likelihood Function on Probabilistic Fracture Initiation Model. Procedia Structural Integrity, 2016, 2, 2463-2470.	0.3	1
24	Finite element model to simulate crack propagation based on local fracture stress criterion. Procedia Structural Integrity, 2016, 2, 2558-2565.	0.3	2
25	Prediction model for fatigue life considering microstructures of steel. Procedia Structural Integrity, 2016, 2, 2575-2582.	0.3	1
26	Modeling of Brittle Crack Propagation/Arrest Behavior in Steel Plates. Procedia Structural Integrity, 2016, 2, 2598-2605.	0.3	2
27	Multiscale modeling to clarify the relationship between microstructures of steel and macroscopic brittle crack propagation/arrest behavior. Procedia Structural Integrity, 2016, 2, 2389-2396.	0.3	3
28	Prediction model on cleavage fracture initiation in steels having ferrite–cementite microstructures – Part II: Model validation and discussions. Engineering Fracture Mechanics, 2016, 151, 181-202.	2.0	22
29	Prediction model on cleavage fracture initiation in steels having ferrite–cementite microstructures – Part I: Model presentation. Engineering Fracture Mechanics, 2016, 151, 161-180.	2.0	27
30	Quantitative Evaluation of Microstructural Influence on the Brittle Fracture Toughness of Ferrite-Pearlite Steels. International Journal of Offshore and Polar Engineering, 2016, 26, 287-295.	0.3	2
31	Fracture Toughness Prediction Model for Low-carbon Bainite Steels Containing Inter-lath Martensite. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 320-329.	0.1	6
32	Investigation of Micro-crack Initiation as a Trigger of Cleavage Fracture in Ferrite-pearlite Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 330-339.	0.1	1
33	Multiscale Model Synthesis to Clarify the Relationship between Microstructures of Steel and Macroscopic Brittle Crack Arrest Behavior – Part II: Application to Crack Arrest Test. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 356-364.	0.1	0
34	Multiscale Model Synthesis to Clarify the Relationship between Microstructures of Steel and Macroscopic Brittle Crack Arrest Behavior – Part I: Model Presentation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 347-355.	0.1	2
35	Development of Cleavage Fracture Initiation Model for Bainite Steels Based on Micromechanism. International Journal of Offshore and Polar Engineering, 2016, 26, 278-286.	0.3	0
36	Development of Numerical Model to Predict Cleavage Fracture Toughness of Ferrite-Pearlite Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 384-393.	0.1	9

ΚΑΖUKI SHIBANUMA

#	Article	IF	CITATIONS
37	Nonlinear Dynamic Response and Structural Evaluation of Container Ship in Large Freak Waves. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	0.6	9
38	A Two-Dimensional Hydroelastoplasticity Method of a Container Ship in Extreme Waves. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	0.6	4
39	FUNDAMENTAL STUDY ON THE SIMULATION OF FAST CRACK PROPAGATION BY FINITE ELEMENT METHOD. Journal of Japan Society of Civil Engineers Ser A2 (Applied Mechanics (AM)), 2015, 71, I_29-I_38.	0.1	1
40	A Stochastic method to estimate fracture toughness scatter of inhomogeneous materials based on the weakest-link assumption. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 180-186.	0.1	0
41	Numerical Simulation of Brittle Crack Propagation and Arrest in Steels Considering Shear-Lip Formation. International Journal of Offshore and Polar Engineering, 2015, 25, .	0.3	2
42	Observation and Quantification of Crack Nucleation in Ferrite-Cementite Steel. ISIJ International, 2014, 54, 1719-1728.	0.6	17
43	An explicit application of partition of unity approach to XFEM approximation for precise reproduction of <i>a priori</i> knowledge of solution. International Journal for Numerical Methods in Engineering, 2014, 97, 551-581.	1.5	6
44	Probabilistic Fracture Mechanics Analysis on the Scatter of Critical CTOD. , 2014, 3, 1447-1452.		7
45	Quantitative Prediction of Cleavage Fracture Toughness of Ferrite Steel without Adjustable Parameters. , 2014, 3, 1238-1243.		2
46	Evaluation on the Brittle Crack Branching in a Steel with Focusing on a Material Texture. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2014, 19, 139-148.	0.2	0
47	Brittle Fracture. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2014, 83, 540-543.	0.0	0
48	Development of Numerical Model to Predict Cleavage Fracture Toughness of Ferrite Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 40-49.	0.1	7
49	Numerical Simulation of Fracture Toughness Testing by Prediction Model of Cleavage Fracture Toughness. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 50-59.	0.1	5
50	Observation and Quantification of Crack Nucleation in Ferrite-Cementite Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 582-591.	0.1	8
51	Evaluation on Dependence of Ductile Crack Propagation Resistance on Crack Velocity. , 2012, , .		0
52	Dependence of Cleavage Facet Size in Ferrite Steel on Temperature. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 184-189.	0.1	9
53	Numerical Simulation of Cleavage Fracture Formation in Grain of Ferrite Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 190-196.	0.1	2
54	Evaluation on reproduction of priori knowledge in XFEM. Finite Elements in Analysis and Design, 2011, 47, 424-433.	1.7	9

#	Article	IF	CITATIONS
55	FORMULATION OF XFEM BASED ON PUFEM FOR AVOIDING PROBLEM CAUSED BY BLENDING ELEMENTS. Doboku Gakkai Ronbunshuu A, 2009, 65, 228-242.	0.3	2
56	Reformulation of XFEM based on PUFEM for solving problem caused by blending elements. Finite Elements in Analysis and Design, 2009, 45, 806-816.	1.7	32
57	A STUDY ON REPRODUCIBILITY OF PRIORI KNOWLEDGE IN CRACK ANNALISIS BY THE XFEM. Doboku Gakkai Ronbunshuu A, 2009, 65, 955-960.	0.3	0
58	EVALUATION OF BLENDING ELEMENTS IN XFEM ON CRACK ANALYSIS AND PROPOSAL FOR IMPROVEMENT OF ANALYTICAL ACCURACY. Doboku Gakkai Ronbunshuu A, 2008, 64, 970-981.	0.3	3
59	PROPOSAL ON APPROXIMATION OF PATH-INDEPENDENT M-INTEGRAL BY MAPPING AND ANALYSES OF KINKED OR CURVED CRACK USING X-FEM. Doboku Gakkai Ronbunshuu A, 2008, 64, 303-316.	0.3	5
60	CURVED-CRACK MODELING BY X-FEM AND ITS APPLICATION FOR SIMULATION OF CRACK GROWTH. Doboku Gakkai Ronbunshuu A, 2007, 63, 108-121.	0.3	5