
Xijun Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-Ion batteries. Journal of Colloid and Interface Science, 2022, 607, 752-759.	9.4	36
2	MoO42â^'-mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 1897-1905.	9.4	17
3	Structural Modification Engineering of Si Nanoparticles by MILâ€125 for Highâ€performance Lithiumâ€ion Storage. ChemistrySelect, 2022, 7, .	1.5	1
4	Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Materials, 2022, 51, 815-839.	18.0	25
5	Orientated VSe2 nanoparticles anchored on N-doped hollow carbon sphere for high-stable aqueous energy application. Journal of Colloid and Interface Science, 2021, 585, 12-19.	9.4	74
6	Potassium mediated Co–Fe-based Prussian blue analogue architectures for aqueous potassium-ion storage. Chemical Communications, 2021, 57, 7019-7022.	4.1	24
7	Developing Binderâ€Free Electrode Based on Metalâ€Organic Frameworks and Graphene Hydrogel for Electrochemical Energy Storage. Energy Technology, 2021, 9, 2100121.	3.8	4
8	Metal–Organic Framework-Derived ZnSe- and Co _{0.85} Se-Filled Porous Nitrogen-Doped Carbon Nanocubes Interconnected by Reduced Graphene Oxide for Sodium-Ion Battery Anodes. Inorganic Chemistry, 2021, 60, 11693-11702.	4.0	24
9	ZnO/CoO@NiCoS nanohybrids with double heterogeneous interface for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 875, 160046.	5.5	14
10	Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour. Chemical Engineering Journal, 2021, 425, 131431.	12.7	19
11	A review of size engineering-enabled electrocatalysts for Li–S chemistry. Nanoscale Advances, 2021, 3, 5777-5784.	4.6	10
12	Rational design of flower-like Co–Zn LDH@Co(H ₂ PO ₄) ₂ heterojunctions as advanced electrode materials for supercapacitors. Dalton Transactions, 2021, 50, 4643-4650.	3.3	17
13	Phosphorization Engineering on Metal–Organic Frameworks for Quasiâ€Solidâ€State Asymmetry Supercapacitors. Small, 2021, 17, e2007062.	10.0	69
14	Gas–solid phase flow synthesis of Cu–Co-1,3,5-benzenetricarboxylate for electrocatalytic oxygen evolution. Chemical Communications, 2021, 57, 12297-12300.	4.1	8
15	The effect of work function difference between cathode and anode materials on the potential window of the supercapacitor. Electrochimica Acta, 2020, 332, 135479.	5.2	13
16	Controllable synthesis of layered K _{0.296} Mn _{0.926} O ₂ to assemble 2.4 V aqueous potassium-ion supercapacitors for double high devices. Journal of Materials Chemistry A, 2020, 8, 17248-17256.	10.3	18
17	Trimetallic CoFeCr hydroxide electrocatalysts synthesized at a low temperature for accelerating water oxidation <i>via</i> tuning the electronic structure of active sites. Sustainable Energy and Fuels, 2020, 4, 3647-3653.	4.9	12
18	A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chemical Engineering Journal, 2019, 355, 336-340.	12.7	150

XIJUN WEI

#	Article	IF	CITATIONS
19	Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chemical Communications, 2019, 55, 10896-10899.	4.1	82
20	High Energy Capacitors Based on All Metalâ€Organic Frameworks Derivatives and Solarâ€Charging Station Application. Small, 2019, 15, e1902280.	10.0	44
21	Carbon-incorporated NiO/Co ₃ O ₄ concave surface microcubes derived from a MOF precursor for overall water splitting. Chemical Communications, 2019, 55, 6515-6518.	4.1	86
22	Pore and Heteroatom Engineered Carbon Foams for Supercapacitors. Advanced Energy Materials, 2019, 9, 1803665.	19.5	321
23	Modulated transition metal–oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts. Nanoscale, 2019, 11, 23296-23303.	5.6	48
24	Hierarchical MoS2-Coated V2O3 composite nanosheet tubes as both the cathode and anode materials for pseudocapacitors. Electrochimica Acta, 2018, 277, 218-225.	5.2	21
25	Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chemical Engineering Journal, 2018, 341, 618-627.	12.7	94
26	Inâ€Situ Growth of Zeolitic Imidazolate Frameworkâ€67â€derived Nanoporous Carbon@K _{0.5} Mn ₂ O ₄ for Highâ€Performance 2.4â€V Aqueous Asymmetric Supercapacitors. ChemSusChem, 2018, 11, 3167-3174.	6.8	52
27	Coreâ€shell NiCo ₂ S ₄ @MnMoO ₄ as an Advanced Electrode Material for Highâ€performance Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 2634-2642.	3.4	15