Ana Beloqui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202423/publications.pdf Version: 2024-02-01

ANA RELOOUL

#	Article	IF	CITATIONS
1	Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease. Acta Biomaterialia, 2022, 140, 561-572.	4.1	13
2	Surface Modification of Lipid-Based Nanoparticles. ACS Nano, 2022, 16, 7168-7196.	7.3	49
3	Advances in lipid carriers for drug delivery to the gastrointestinal tract. Current Opinion in Colloid and Interface Science, 2021, 52, 101414.	3.4	27
4	Oral Delivery of Biologics in Inflammatory Bowel Disease Treatment. Frontiers in Bioengineering and Biotechnology, 2021, 9, 675194.	2.0	18
5	An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Advanced Drug Delivery Reviews, 2021, 175, 113795.	6.6	69
6	Quality-by-Design-Based Development of a Voxelotor Self-Nanoemulsifying Drug-Delivery System with Improved Biopharmaceutical Attributes. Pharmaceutics, 2021, 13, 1388.	2.0	7
7	Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics, 2020, 12, 1194.	2.0	86
8	Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut, 2020, 69, 911-919.	6.1	41
9	Ascorbyl-dipalmitate-stabilised nanoemulsions as a potential localised treatment of inflammatory bowel diseases. International Journal of Pharmaceutics, 2020, 586, 119533.	2.6	10
10	Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials, 2020, 255, 120209.	5.7	30
11	Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. International Journal of Pharmaceutics, 2020, 586, 119515.	2.6	40
12	Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDSs) for senicapoc. International Journal of Pharmaceutics, 2020, 580, 119180.	2.6	25
13	Solid lipid nanocarriers diffuse effectively through mucus and enter intestinal cells – but where is my peptide?. International Journal of Pharmaceutics, 2020, 586, 119581.	2.6	9
14	Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. Journal of Controlled Release, 2020, 322, 486-508.	4.8	106
15	Size Effect on Lipid Nanocapsule-Mediated GLP-1 Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2018, 15, 108-115.	2.3	23
16	The stimulation of GLP-1 secretion and delivery of GLP-1 agonists <i>via</i> nanostructured lipid carriers. Nanoscale, 2018, 10, 603-613.	2.8	35
17	Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. European Polymer Journal, 2017, 93, 695-705.	2.6	17
18	A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nature Protocols, 2017, 12, 1387-1399.	5.5	64

Ana Beloqui

#	Article	IF	CITATIONS
19	Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs. Journal of Drug Delivery Science and Technology, 2017, 42, 144-154.	1.4	62
20	Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Advanced Drug Delivery Reviews, 2016, 106, 242-255.	6.6	98
21	The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Journal of Controlled Release, 2016, 243, 109-120.	4.8	45
22	A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2016, 13, 4222-4230.	2.3	24
23	A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids and Surfaces B: Biointerfaces, 2016, 143, 327-335.	2.5	76
24	Reformulating cyclosporine A (CsA): More than just a life cycle management strategy. Journal of Controlled Release, 2016, 225, 269-282.	4.8	45
25	Cyclosporine A-loaded lipid nanoparticles in inflammatory bowel disease. International Journal of Pharmaceutics, 2016, 503, 196-198.	2.6	26
26	Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 2016, 499, 81-89.	2.6	81
27	Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 143-161.	1.7	488
28	Delivery of Peptides Via the Oral Route: Diabetes Treatment by Peptide-Loaded Nanoparticles. Current Pharmaceutical Design, 2016, 22, 1161-1176.	0.9	19
29	Targeting Inflammatory Bowel Diseases by Nanocarriers Loaded with Small and Biopharmaceutical Anti-Inflammatory Drugs. Current Pharmaceutical Design, 2016, 22, 6192-6206.	0.9	12
30	Dextran–protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. International Journal of Pharmaceutics, 2014, 468, 105-111.	2.6	72
31	pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. International Journal of Pharmaceutics, 2014, 473, 203-212.	2.6	196
32	Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. Journal of Microencapsulation, 2014, 31, 1-8.	1.2	47
33	Biodistribution of Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats: Influence of technological factors. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 309-314.	2.0	51
34	Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. Journal of Controlled Release, 2013, 166, 115-123.	4.8	176
35	Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. International Journal of Pharmaceutics, 2013, 454, 775-783.	2.6	115