Jingang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202379/publications.pdf Version: 2024-02-01

LINCANC WANC

#	Article	IF	CITATIONS
1	Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances, 2017, 7, 16801-16822.	1.7	500
2	Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics, 2017, 2, 6-34.	2.9	305
3	Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies. Journal of Hazardous Materials, 2021, 404, 124140.	6.5	112
4	Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 2019, 16, 1-20.	2.3	82
5	Visualization of Photoinduced Charge Transfer and Electron–Hole Coherence in Two-Photon Absorption. Journal of Physical Chemistry C, 2019, 123, 14132-14143.	1.5	81
6	The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures. Materials Today Physics, 2018, 5, 29-57.	2.9	79
7	Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials. Nanophotonics, 2017, 6, 943-976.	2.9	78
8	Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots. Scientific Reports, 2016, 6, 24850.	1.6	64
9	Recent advances in surface plasmon-driven catalytic reactions. RSC Advances, 2017, 7, 31189-31203.	1.7	58
10	Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride. Materials Today Physics, 2017, 3, 93-117.	2.9	56
11	Graphene plasmon for optoelectronics. Reviews in Physics, 2021, 6, 100054.	4.4	54
12	The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials. Nanomaterials, 2019, 9, 218.	1.9	52
13	Synthesis of Wafer cale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
14	Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sensors, 2021, 6, 3841-3881.	4.0	45
15	Plasmonâ€Exciton Coupling Interaction for Surface Catalytic Reactions. Chemical Record, 2018, 18, 481-490.	2.9	44
16	Visualizations of Electric and Magnetic Interactions in Electronic Circular Dichroism and Raman Optical Activity. Journal of Physical Chemistry A, 2019, 123, 8071-8081.	1.1	43
17	Porous size dependent g-C3N4 for efficient photocatalysts: Regulation synthesizes and physical mechanism. Materials Today Energy, 2019, 13, 11-21.	2.5	41
18	Plasmonâ€Enhanced Fluorescence Resonance Energy Transfer. Chemical Record, 2019, 19, 818-842.	2.9	41

JINGANG WANG

#	Article	IF	CITATIONS
19	The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. Journal of Materials Chemistry C, 2021, 9, 13600-13616.	2.7	27
20	The nature of chirality induced by molecular aggregation and self-assembly. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 212, 188-198.	2.0	26
21	Solution-phase vertical growth of aligned NiCo2O4 nanosheet arrays on Au nanosheets with weakened oxygen–hydrogen bonds for photocatalytic oxygen evolution. Nanoscale, 2020, 12, 6195-6203.	2.8	23
22	Recent Progresses in Integrated Nanoplasmonic Devices Based on Propagating Surface Plasmon Polaritons. Plasmonics, 2015, 10, 1841-1852.	1.8	20
23	Optical advantages of graphene on the boron nitride in visible and SW-NIR regions. RSC Advances, 2016, 6, 111345-111349.	1.7	17
24	Dependence of UV–Visible Absorption Characteristics on the Migration Distance and the Hyperconjugation Effect of a Methine Chain. Journal of Physical Chemistry C, 2018, 122, 7831-7837.	1.5	16
25	Coupling effect on chargeâ€transfer mechanism of surfaceâ€enhanced resonance Raman scattering. Journal of Raman Spectroscopy, 2017, 48, 560-569.	1.2	15
26	Plasmon-driven molecular photodissociations. Applied Materials Today, 2019, 15, 212-235.	2.3	13
27	Novel electrical properties and applications in kaleidoscopic graphene nanoribbons. RSC Advances, 2021, 11, 33675-33691.	1.7	13
28	Visualization of weak interactions between quantum dot and graphene in hybrid materials. Scientific Reports, 2017, 7, 417.	1.6	11
29	The Dependence of Implicit Solvent Model Parameters and Electronic Absorption Spectra and Photoinduced Charge Transfer. Scientific Reports, 2020, 10, 3713.	1.6	11
30	Optical-electrical synergy on electricity manipulating plasmon-driven photoelectrical catalysis. Applied Materials Today, 2019, 15, 305-314.	2.3	10
31	Mechanical properties of Fe-based bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy rods. Chemical Physics Letters, 2020, 750, 137511.	1.2	10
32	Electric Field Induced Twisted Bilayer Graphene Infrared Plasmon Spectrum. Nanomaterials, 2021, 11, 2433.	1.9	10
33	Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance. Catalysts, 2019, 9, 193.	1.6	9
34	Voltage-manipulating graphene-mediated surface-enhanced Raman scattering (G-SERS): principle and applications. Applied Spectroscopy Reviews, 2020, 55, 558-573.	3.4	9
35	Charge-transfer channel in quantum dot–graphene hybrid materials. Nanotechnology, 2018, 29, 145202	1.3	8
36	Raman optical activity (ROA) and surface-enhanced ROA (SE-ROA) of (+)-(R)-methyloxirane adsorbed on a Ag ₂₀ cluster. RSC Advances, 2017, 7, 34376-34381.	1.7	7

JINGANG WANG

#	Article	IF	CITATIONS
37	Au Tip-Enhanced Raman Spectroscopy for Catalysis. Applied Sciences (Switzerland), 2018, 8, 2026.	1.3	7
38	Nanocrystallization and magnetostriction coefficient of Fe52Co34Hf7B6Cu1 amorphous alloy treated by medium-frequency magnetic pulse. Journal of Magnetism and Magnetic Materials, 2018, 468, 181-184.	1.0	7
39	Physical mechanism on edge-dependent electrons transfer in graphene in mid infrared region. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 136-145.	2.0	7
40	Physical mechanism of special type photoinduced charge transfer in one-photon and two-photon absorption of Mobius rings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118264.	2.0	7
41	Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals. Nanomaterials, 2022, 12, 535.	1.9	7
42	pH-Dependent plasmonic catalysis of 4-nitrobenzenethiol in aqueous environment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 542-545.	2.0	6
43	Plasmonic Photocatalysts Monitored by Tip-Enhanced Raman Spectroscopy. Catalysts, 2019, 9, 109.	1.6	6
44	Physical mechanism of concentration-dependent fluorescence resonance energy transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118143.	2.0	6
45	Angle-resolved one and Two-Photon absorption spectrum in twisted bilayer graphene quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120894.	2.0	6
46	Principle and Application of Tip-enhanced Raman Scattering. Plasmonics, 2018, 13, 1343-1358.	1.8	5
47	Photoinduced Charge Transfer in Push/Pull Systems of Two-Photon Absorption. ACS Omega, 2020, 5, 17275-17286.	1.6	5
48	Synthesis and photophysical properties of multilayer emitting π-p-π fluorophores. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117680.	2.0	4
49	Study of Intermolecular Interaction between Small Molecules and Carbon Nanobelt: Electrostatic, Exchange, Dispersive and Inductive Forces. Catalysts, 2022, 12, 561.	1.6	4
50	Physical mechanism of the photoinduced charge transfer in multibranched compounds during one- and two-photon absorption. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118144.	2.0	3
51	[6,6]CNB with controllable external electric field deformation: a theoretical study of the structure-function relationship. Materials Research Express, 2022, 9, 064001.	0.8	3
52	Nanoplasmon–Semiconductor Hybrid for Interface Catalysis. Catalysts, 2018, 8, 429.	1.6	2
53	Excitation induced asymmetric fluorescence emission in 2D-WS ₂ quantum dots. Materials Advances, 2022, 3, 1772-1779.	2.6	2
54	Visible Light Electromagnetic Interaction of PM567 Chiral Dye for Asymmetric Photocatalysis, a First-Principles Investigation. Catalysts, 2020, 10, 882.	1.6	1

JINGANG WANG

#	Article	IF	CITATIONS
55	Excited States Symmetry Breaking and In-Plane Polarization Cause Chiral Reversal in Diastereomers. Molecules, 2021, 26, 4680.	1.7	1
56	Impurity Controlled near Infrared Surface Plasmonic in AlN. Nanomaterials, 2022, 12, 459.	1.9	1
57	The physical mechanism of electron excitation spectrum for photo redox device controlled by gate voltage, a first-principles study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117225.	2.0	0
58	Physical mechanism of layer-dependent strong and weak coupling with electromagnetic wave in 2H-MoS2. Materials Research Express, 2021, 8, 025012.	0.8	0
59	Intra-Molecular Electrical Field Regulated Nonlinear Catalyst Charge Transfer in the Organic Conjugated Molecular System. Catalysts, 2021, 11, 1375.	1.6	0