Shuichi Ishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202317/publications.pdf

Version: 2024-02-01

1937685 1720034 14 43 4 7 citations h-index g-index papers 15 15 15 18 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Holonomic Omnidirectional Vehicle with Ball Wheel Drive Mechanism. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2012, 78, 2162-2170.	0.2	11
2	Collision-Detecting Device for Omnidirectional Electric Wheelchair. ISRN Robotics, 2013, 2013, 1-8.	1.3	11
3	Holonomic Omnidirectional Vehicle with Ball Wheel Drive Mechanism and Application to RoboCup Soccer Middle Size League. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2014, 26, 669-677.	0.0	9
4	Detection of Elastic Wave during Al Wire Bonding by Thin AE Sensor. IEEJ Transactions on Industry Applications, 2014, 134, 840-841.	0.2	5
5	Estimation of Wire Bonding State by the Ensemble Based MT Method and Thin AE Sensor. Transactions of the Japan Institute of Electronics Packaging, 2016, 9, E16-002-1-E16-002-10.	0.4	2
6	Improvement of Sampling Inspection for Wire Bonding Using Taming and Thin Film AE Sensor. Transactions of the Japan Institute of Electronics Packaging, 2016, 9, E16-015-1-E16-015-7.	0.4	2
7	Development of Gait Training Robot with Ball Wheel Drive Mechanism. Ningen Kogaku = the Japanese Journal of Ergonomics, 2013, 49, 76-81.	0.1	1
8	Estimation of Wire Bonding States by Ensemble Based on MT Method and Thin AE Sensor Method. Journal of Japan Institute of Electronics Packaging, 2017, 20, 203-210.	0.1	1
9	Non-destructive Anomaly Detection Method for Wire Bonding Using a Thin Film AE Sensor. Transactions of the Japan Institute of Electronics Packaging, 2019, 12, E19-001-1-E19-001-14.	0.4	1
10	Research on Low-Cost Design Method of Offshore Platform DPS before Construction. Applied Mechanics and Materials, 2012, 271-272, 1402-1409.	0.2	0
11	Label Estimation Method with Modifications for Unreliable Examples in Taming., 2017,,.		0
12	Improving Maintainability and Reducing Noise of Ball Wheel Drive for Tourism Facilities. IEEJ Transactions on Industry Applications, 2015, 135, 93-98.	0.2	0
13	G1300201 Evaluation of Wire Bonding State by Thin AE Sensor. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _G1300201G1300201	0.0	0
14	Improvement of Sampling Inspection for Wire Bonding Using Thin AE Sensor and Transfer Learning. Journal of Japan Institute of Electronics Packaging, 2019, 22, 209-217.	0.1	0