
Niravkumar Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochimica Acta, 2018, 185, 213.	5.0	502
2	Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sensors and Actuators B: Chemical, 2018, 257, 906-915.	7.8	197
3	Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances, 2021, 6, 100163.	6.8	141
4	Au–TiO ₂ -Loaded Cubic g-C ₃ N ₄ Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications. ACS Applied Materials & Interfaces, 2018, 10, 34087-34097.	8.0	132
5	One-step approach for preparing ozone gas sensors based on hierarchical NiCo ₂ O ₄ structures. RSC Advances, 2016, 6, 92655-92662.	3.6	114
6	UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Mikrochimica Acta, 2019, 186, 418.	5.0	109
7	H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Organic Electronics, 2014, 15, 71-81.	2.6	102
8	Flexible NO gas sensor based on conducting polymer poly[N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). Se Actuators B: Chemical, 2017, 239, 734-745.	n zø rs and	94
9	Flexible H2S sensor based on gold modified polycarbazole films. Sensors and Actuators B: Chemical, 2014, 200, 227-234.	7.8	78
10	Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Advances, 2013, 3, 5506.	3.6	76
11	NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 2020, 529, 147110.	6.1	61
12	Green Synthesis and Applications of ZnO and TiO2 Nanostructures. Molecules, 2021, 26, 2236.	3.8	60
13	Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films. Sensors and Actuators B: Chemical, 2015, 206, 653-662.	7.8	59
14	One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air–water interface by photopolymerization. RSC Advances, 2013, 3, 13329.	3.6	56
15	Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Advances, 2013, 3, 24567.	3.6	55
16	Advances in the designs and mechanisms of MoO ₃ nanostructures for gas sensors: a holistic review. Materials Advances, 2021, 2, 4190-4227.	5.4	52
17	AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sensors and Actuators B: Chemical, 2018, 263, 94-102.	7.8	51

18 Wide-Angle X-ray Diffraction (WXRD). , 2017, , 313-337.

Niravkumar Joshi

#	Article	IF	CITATIONS
19	Insights into nano-heterostructured materials for gas sensing: a review. Multifunctional Materials, 2021, 4, 032002.	3.7	40
20	Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films. Applied Physics Letters, 2013, 102, .	3.3	38
21	Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Applied Materials & Interfaces, 2019, 11, 1699-1705.	8.0	37
22	Cellulose acetate-MoS2 nanopetal hybrid: A highly sensitive and selective electrochemical aptasensor of Troponin I for the early diagnosis of Acute Myocardial Infarction. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 245-253.	5.3	32
23	All-Carbon Based Flexible Humidity Sensor. Journal of Nanoscience and Nanotechnology, 2019, 19, 5310-5316.	0.9	27
24	Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. Journal of Materials Chemistry C, 2021, 9, 5633-5642.	5.5	25
25	Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry Reviews, 2022, 466, 214611.	18.8	22
26	Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Mikrochimica Acta, 2020, 187, 619.	5.0	21
27	Synthesis and dielectric behavior of nano-scale barium titanate. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 83-90.	2.9	20
28	Highly sensitive and selective acute myocardial infarction detection using aptamerâ€ŧethered MoS ₂ nanoflower and screenâ€printed electrodes. Biotechnology and Applied Biochemistry, 2020, , .	3.1	20
29	Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. Nanomaterials, 2022, 12, 821.	4.1	20
30	<i>A Special Section on</i> Applications of 2D/3D Materials in Sensing and Photocatalysis. Journal of Nanoscience and Nanotechnology, 2019, 19, 5052-5053.	0.9	18
31	Synthesis and Characterization of Nano-Barium Titanate Prepared by Hydrothermal Process. Integrated Ferroelectrics, 2010, 115, 142-148.	0.7	17
32	DIELECTRIC BEHAVIOR OF NANO BARIUM TITANATE FILLED POLYMERIC COMPOSITES. International Journal of Modern Physics Conference Series, 2013, 22, 1-10.	0.7	14
33	Selective sensing of chemical vapors using phase spectra detection on CVD graphene fet. , 2018, , .		14
34	Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules. , 2019, , 321-336.		14
35	3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 26-35.	5.3	14
36	Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. , 2016, , .		12

3

Niravkumar Joshi

#	Article	IF	CITATIONS
37	Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Critical Reviews in Food Science and Nutrition, 2023, 63, 10536-10559.	10.3	11
38	MoS2 nanoflowers-activated peroxydisulfate oxidation for rapid and efficient water disinfection. Water Cycle, 2022, 3, 44-49.	4.0	10
39	Synthesis and Characterization of Polyurea Resin for Dielectric Coating Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 1683-1692.	1.9	9
40	Nanosensors for monitoring indoor pollution in smart cities. , 2020, , 251-266.		9
41	Two-Dimensional Transition Metal Dichalcogenides for Gas Sensing Applications. Environmental Chemistry for A Sustainable World, 2020, , 131-155.	0.5	9
42	Label-Free AC Sensing by a Graphene Transistor for 100-ppb Formaldehyde in Air. , 2019, , .		7
43	Hybridized Graphitic Carbon Nitride (g-CN) as High Performance VOCsÂSensor. Materials Horizons, 2020, , 285-302.	0.6	7
44	Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. Environmental Chemistry for A Sustainable World, 2020, , 87-129.	0.5	6
45	Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals. , 2021, , 293-311.		5
46	Smart materials for electrochemical flexible nanosensors: Advances and applications. , 2021, , 347-371.		5
47	Self-powered environmental monitoring gas sensors: Piezoelectric and triboelectric approaches. , 2021, , 463-489.		5
48	Temperature dependence dielectric properties of modified barium titanate-PVB composites. AlP Conference Proceedings, 2013, , .	0.4	4
49	Metal Oxides and Sulfide-Based Biosensors for Monitoring and Health Control. Environmental Chemistry for A Sustainable World, 2021, , 169-208.	0.5	3
50	Recent Advances on UV-Enhanced Oxide Nanostructures Gas Sensors. Materials Horizons, 2020, , 143-159.	0.6	3
51	Influence of Metal Doping on Electrical Properties of Nano Barium Titanate. Advanced Electrochemistry, 2014, 2, 3-8.	0.1	2
52	<i>A Special Issue</i> on Functional Nanomaterials for Sensor Applications. Sensor Letters, 2019, 17, 177-179.	0.4	1