Antonio Vidal-Puig

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9202233/antonio-vidal-puig-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

281 20,863 78 138 h-index g-index citations papers 6.81 23,663 311 9.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
281	Dietary PUFA drives diverse systems-level changes in lipid metabolism <i>Molecular Metabolism</i> , 2022 , 59, 101457	8.8	O
280	Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance <i>JHEP Reports</i> , 2022 , 4, 100409	10.3	4
279	Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway <i>IScience</i> , 2022 , 25, 104267	6.1	O
278	Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance <i>Nature Metabolism</i> , 2022 , 4, 476-494	14.6	1
277	White, Brown and Beige Adipocytes: From the Tissue to the Single-Cell Level 2022 ,		
276	Insulin and the last gasp of failing adipocytes. <i>Nature Metabolism</i> , 2021 , 3, 1443-1444	14.6	
275	Lipotoxicity: a driver of heart failure with preserved ejection fraction?. Clinical Science, 2021, 135, 2265-	·262.§3	5
274	Unraveling the Developmental Roadmap toward Human Brown Adipose Tissue. <i>Stem Cell Reports</i> , 2021 , 16, 641-655	8	2
273	Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. <i>Nature Communications</i> , 2021 , 12, 1905	17.4	18
272	Obesity and pregnancy, the perfect metabolic storm. <i>European Journal of Clinical Nutrition</i> , 2021 , 75, 1723-1734	5.2	6
271	Autocrine IGF2 programmes Etell plasticity under conditions of increased metabolic demand. <i>Scientific Reports</i> , 2021 , 11, 7717	4.9	1
270	Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men-Not in Women. <i>Diabetes</i> , 2021 , 70, 1473-1485	0.9	4
269	GTTs and ITTs in mice: simple tests, complex answers. <i>Nature Metabolism</i> , 2021 , 3, 883-886	14.6	15
268	Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. <i>Molecular Metabolism</i> , 2021 , 48, 101220	8.8	3
267	Regulation of adipogenic differentiation and adipose tissue inflammation by interferon regulatory factor 3. <i>Cell Death and Differentiation</i> , 2021 , 28, 3022-3035	12.7	3
266	Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. <i>Molecular Metabolism</i> , 2021 , 48, 101210	8.8	6
265	Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. <i>Hepatology</i> , 2021 , 73, 102	811044	22

(2020-2021)

264	Pancreatic Lells control glucose homeostasis via the secretion of exosomal miR-29 family. <i>Journal of Extracellular Vesicles</i> , 2021 , 10, e12055	16.4	13
263	Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	6
262	Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. <i>Nature Metabolism</i> , 2021 , 3, 228-243	14.6	16
261	A pipeline for making P NMR accessible for small- and large-scale lipidomics studies. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 4763-4773	4.4	4
260	Allostatic hypermetabolic response in PGC1倒heterozygote mouse despite mitochondrial defects. <i>FASEB Journal</i> , 2021 , 35, e21752	0.9	O
259	Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. <i>Scientific Reports</i> , 2021 , 11, 17571	4.9	1
258	SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. <i>Nature Metabolism</i> , 2021 , 3, 1150-1162	14.6	2
257	Norepinephrine promotes triglyceride storage in macrophages via beta2-adrenergic receptor activation. <i>FASEB Journal</i> , 2021 , 35, e21266	0.9	1
256	What is the most appropriate covariate in ANCOVA when analysing metabolic rate?. <i>Nature Metabolism</i> , 2021 , 3, 1585	14.6	1
255	Q -spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development <i>Science Translational Medicine</i> , 2021 , 13, eabk2267	17.5	3
254	Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation. <i>BMJ Open Diabetes Research and Care</i> , 2020 , 8,	4.5	8
253	Reply to: 'Browning capabilities of human primary adipose-derived stromal cells compared to SGBS cells'. <i>Scientific Reports</i> , 2020 , 10, 9634	4.9	
252	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. <i>Nature Metabolism</i> , 2020 , 2, 514-531	14.6	17
251	Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. <i>Gastroenterology</i> , 2020 , 158, 1899-1912	13.3	53
250	GDF15 mediates the effects of metformin on body weight and energy balance. <i>Nature</i> , 2020 , 578, 444-4	148.4	171
249	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. <i>PLoS Genetics</i> , 2020 , 16, e1009069	6	7
248	Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. <i>Molecular Metabolism</i> , 2020 , 40, 101020	8.8	3
247	Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. <i>Molecular Metabolism</i> , 2020 , 31, 67-84	8.8	16

246	The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. <i>Science Advances</i> , 2020 , 6,	14.3	3
245	Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	51
244	Studying Brown Adipose Tissue in a Human Context. Frontiers in Endocrinology, 2020, 11, 629	5.7	7
243	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function 2020 , 16, e1009069		
242	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function 2020 , 16, e1009069		
241	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function 2020 , 16, e1009069		
240	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function 2020 , 16, e1009069		
239	Genes Involved in Oxidative Stress Pathways Are Differentially Expressed in Circulating Mononuclear Cells Derived From Obese Insulin-Resistant and Lean Insulin-Sensitive Individuals Following a Single Mixed-Meal Challenge. <i>Frontiers in Endocrinology</i> , 2019 , 10, 256	5.7	1
238	Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function. <i>FASEB Journal</i> , 2019 , 33, 9656-9671	0.9	1
237	Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. <i>Cell Reports</i> , 2019 , 27, 3385-3400.e3	10.6	42
236	4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. <i>Nature Metabolism</i> , 2019 , 1, 546-559	14.6	14
235	Enhanced 🗟 drenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110 finactivation in adipose tissue. <i>Nature Communications</i> , 2019 , 10, 1546	17.4	14
234	Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes. <i>FASEB Journal</i> , 2019 , 33, 430-4	4 6 ·9	4
233	Brown and beige fat: From molecules to physiology and pathophysiology. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2019 , 1864, 37-50	5	28
232	Obesity in the Pathophysiology of Diabetes 2019 , 185-213		
231	Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. <i>ELife</i> , 2019 , 8,	8.9	26
230	Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. <i>Scientific Reports</i> , 2019 , 9, 2903	4.9	2
229	Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. <i>Molecular Metabolism</i> , 2019 , 20, 38-50	8.8	10

228	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. <i>Cell Metabolism</i> , 2019 , 29, 707-718.e8	24.6	153
227	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. <i>Nature Metabolism</i> , 2019 , 1, 133-146	14.6	26
226	GPER and ERImediate estradiol enhancement of mitochondrial function in inflamed adipocytes through a PKA dependent mechanism. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2019 , 185, 256-267	5.1	11
225	Defective glucose and lipid metabolism in rheumatoid arthritis is determined by chronic inflammation in metabolic tissues. <i>Journal of Internal Medicine</i> , 2018 , 284, 61-77	10.8	17
224	'Basic and Applied Thermogenesis Research' Bridging the Gap. <i>Trends in Endocrinology and Metabolism</i> , 2018 , 29, 5-7	8.8	4
223	Fed-EXosome: extracellular vesicles and cell-cell communication in metabolic regulation. <i>Essays in Biochemistry</i> , 2018 , 62, 165-175	7.6	25
222	PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	68
221	Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. <i>Genome Biology</i> , 2018 , 19, 79	18.3	45
220	"Obesity-associated metabolic complications, the second wave of the tsunami" 14th Key Symposium. <i>Journal of Internal Medicine</i> , 2018 , 284, 447-449	10.8	1
219	Peroxisome Proliferator-Activated Receptor 2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility. <i>Cell Reports</i> , 2018 , 24, 2005-2012.e7	10.6	24
218	Dietary stearic acid regulates mitochondria in vivo in humans. <i>Nature Communications</i> , 2018 , 9, 3129	17.4	42
217	Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. <i>Nature Communications</i> , 2018 , 9, 4974	17.4	58
216	Calcium Channel Ca2.3 Subunits Regulate Hepatic Glucose Production by Modulating Leptin-Induced Excitation of Arcuate Pro-opiomelanocortin Neurons. <i>Cell Reports</i> , 2018 , 25, 278-287.e4	10.6	4
215	Transforming Growth Factor-B Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. <i>Cell Reports</i> , 2018 , 25, 551-560.e5	10.6	45
214	P465L-PPARImutation confers partial resistance to the hypolipidaemic action of fibrates. <i>Diabetes, Obesity and Metabolism,</i> 2018 , 20, 2339-2350	6.7	4
213	Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice. <i>Molecular Metabolism</i> , 2018 , 13, 24-29	8.8	12
212	Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. <i>Progress in Lipid Research</i> , 2017 , 66, 14-29	14.3	53
211	Phenyl-Evalerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. <i>Molecular Nutrition and Food Research</i> , 2017 , 61, 1700074	5.9	25

210	Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. Biochemical Journal, 2017 , 474, 2489-2508	3.8	53
209	No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men. <i>American Journal of Clinical Nutrition</i> , 2017 , 106, 1197-1205	7	4
208	Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. <i>Advances in Nutrition</i> , 2017 , 8, 694-704	10	45
207	SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. <i>Scientific Reports</i> , 2017 , 7, 4031	4.9	34
206	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. <i>Cell Metabolism</i> , 2017 , 26, 212-229.e12	24.6	128
205	Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. <i>Trends in Endocrinology and Metabolism</i> , 2017 , 28, 3-18	8.8	205
204	Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. <i>Hepatology</i> , 2017 , 65, 1165-1180	11.2	87
203	Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 960, 161-196	3.6	93
202	Assessment of plasma acylcarnitines before and after weight loss in obese subjects. <i>Archives of Biochemistry and Biophysics</i> , 2016 , 606, 73-80	4.1	18
201	Metabolic gene expression profile in circulating mononuclear cells reflects obesity-associated metabolic inflexibility. <i>Nutrition and Metabolism</i> , 2016 , 13, 74	4.6	7
200	Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. <i>Nature Medicine</i> , 2016 , 22, 771-9	50.5	33
199	Adipose Structure (White, Brown, Beige) 2016 , 369-396		O
198	Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. <i>Molecular Metabolism</i> , 2016 , 5, 19-33	8.8	59
197	Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice. <i>Stress</i> , 2016 , 19, 214-24	3	9
196	Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes. <i>PLoS ONE</i> , 2016 , 11, e0162047	3.7	11
195	Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. <i>PLoS Genetics</i> , 2016 , 12, e1005916	6	21
194	Mild cold effects on hunger, food intake, satiety and skin temperature in humans. <i>Endocrine Connections</i> , 2016 , 5, 65-73	3.5	16
193	Meal rich in carbohydrate, but not protein or fat, reveals adverse immunometabolic responses associated with obesity. <i>Nutrition Journal</i> , 2016 , 15, 100	4.3	9

(2015-2016)

192	Mitochondria are required for pro-ageing features of the senescent phenotype. <i>EMBO Journal</i> , 2016 , 35, 724-42	13	357
191	Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. <i>Diabetologia</i> , 2016 , 59, 1075-88	10.3	206
190	Deriving functional beige fat from capillaries. <i>Nature Medicine</i> , 2016 , 22, 234-6	50.5	
189	Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 506-11	11.5	22
188	Regulation of mitochondrial morphology and function by stearoylation of TFR1. <i>Nature</i> , 2015 , 525, 124	-850.4	119
187	Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. <i>Diabetologia</i> , 2015 , 58, 2424-34	10.3	25
186	Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARIgene expression. <i>Journal of Molecular Medicine</i> , 2015 , 93, 83-92	5.5	5
185	Adipose Structure (White, Brown, Beige) 2015 , 1-29		
184	Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD. <i>Seminars in Liver Disease</i> , 2015 , 35, 250-61	7.3	37
183	Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. <i>Nature Communications</i> , 2015 , 6, 8951	17.4	46
182	Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. <i>International Journal of Obesity</i> , 2015 , 39, 1151-60	5.5	28
181	Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function. <i>Diabetes</i> , 2015 , 64, 1180-92	0.9	43
180	Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2015 , 1851, 40-50	5	53
179	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. <i>Scientific Reports</i> , 2015 , 5, 18366	4.9	37
178	Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in Insr(P1195L/+) mice fed high-fat-diet. <i>Scientific Reports</i> , 2015 , 5, 17565	4.9	9
177	Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13850-5	11.5	44
176	Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6. <i>Cell Reports</i> , 2015 , 13, 2039-47	10.6	35
175	Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. <i>Cell Reports</i> , 2015 , 11, 335-43	10.6	42

174	Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. <i>Diabetes</i> , 2015 , 64, 3121-34	0.9	111
173	Methods for performing lipidomics in white adipose tissue. <i>Methods in Enzymology</i> , 2014 , 538, 211-31	1.7	13
172	DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16088-93	11.5	38
171	A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. <i>American Journal of Human Genetics</i> , 2014 , 95, 584-589	11	86
170	Review Article: An Adipocentric View of the Metabolic Syndrome and Cardiovascular Disease. <i>Current Cardiovascular Risk Reports</i> , 2014 , 8, 1	0.9	2
169	The different shades of fat. <i>Nature</i> , 2014 , 510, 76-83	50.4	306
168	Understanding disease mechanisms with models of signaling pathway activities. <i>BMC Systems Biology</i> , 2014 , 8, 121	3.5	33
167	Response to letter regarding article, "Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans". <i>Circulation</i> , 2014 , 129, e408	16.7	2
166	The Metabolic Syndrome and its Complex Pathophysiology 2014 , 3-16		2
165	The Central Nervous System in Metabolic Syndrome 2014 , 137-156		
165 164	The Central Nervous System in Metabolic Syndrome 2014 , 137-156 Obesidad y slidrome metablico 2014 , 110-116		
		10.6	10
164	Obesidad y slidrome metablico 2014 , 110-116 Harnessing the beneficial properties of adipogenic microbes for improving human health. <i>Obesity</i>	10.6	10 75
164	Obesidad y slidrome metablico 2014 , 110-116 Harnessing the beneficial properties of adipogenic microbes for improving human health. <i>Obesity Reviews</i> , 2013 , 14, 721-35 A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and		
164 163 162	Obesidad y sfidrome metablico 2014 , 110-116 Harnessing the beneficial properties of adipogenic microbes for improving human health. <i>Obesity Reviews</i> , 2013 , 14, 721-35 A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. <i>Diabetologia</i> , 2013 , 56, 2524-37 Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue	10.3	75
164 163 162	Obesidad y slidrome metablico 2014, 110-116 Harnessing the beneficial properties of adipogenic microbes for improving human health. <i>Obesity Reviews</i> , 2013, 14, 721-35 A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. <i>Diabetologia</i> , 2013, 56, 2524-37 Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2013, 98, 802-10 Regulation of glucose homoeostasis by brown adipose tissue. <i>Lancet Diabetes and</i>	10.3 5.6	75 73
164 163 162 161	Obesidad y sīldrome metablīco 2014, 110-116 Harnessing the beneficial properties of adipogenic microbes for improving human health. Obesity Reviews, 2013, 14, 721-35 A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-37 Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 802-10 Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes and Endocrinology, the, 2013, 1, 353-60 Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the	10.3 5.6 18.1	75 73 78

(2012-2013)

156	Corrigendum to Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response[[Exp. Neurol. 237/2 (2012) 396406]. <i>Experimental Neurology</i> , 2013 , 239, 101	5.7	78
155	Modelling hypothalamic pathways in diabetes and obesity. <i>Drug Discovery Today: Disease Models</i> , 2013 , 10, e95-e100	1.3	
154	Pharmacological strategies for targeting BAT thermogenesis. <i>Trends in Pharmacological Sciences</i> , 2013 , 34, 347-55	13.2	55
153	Beyond the sympathetic tone: the new brown fat activators. <i>Cell Metabolism</i> , 2013 , 17, 638-43	24.6	170
152	When BAT is lacking, WAT steps up. <i>Cell Research</i> , 2013 , 23, 868-9	24.7	8
151	Assessment of brown adipose tissue function. <i>Frontiers in Physiology</i> , 2013 , 4, 128	4.6	62
150	PS6 - 3. Plasma acylcarnitine levels have limited predictive value for metabolic characteristics as insulin sensitivity and energy expenditure. <i>Nederlands Tijdschrift Voor Diabetologie</i> , 2013 , 11, 150-151	О	
149	Adipogenesis: new insights into brown adipose tissue differentiation. <i>Journal of Molecular Endocrinology</i> , 2013 , 51, T75-85	4.5	38
148	Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. <i>Diabetes</i> , 2013 , 62, 3697-708	0.9	56
147	Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. <i>Circulation</i> , 2013 , 128, 702-12	16.7	160
146	Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat. <i>Psychopharmacology</i> , 2012 , 219, 783-94	4.7	60
145	Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response. <i>Experimental Neurology</i> , 2012 , 237, 396-406	5.7	19
144	The Obese Species: a special issue on obesity and metabolic disorders. Foreword. <i>DMM Disease Models and Mechanisms</i> , 2012 , 5, 563-4	4.1	5
143	PGC-1Hegatively regulates extrasynaptic NMDAR activity and excitotoxicity. <i>Journal of Neuroscience</i> , 2012 , 32, 6995-7000	6.6	46
142	BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. <i>Cell</i> , 2012 , 149, 871-85	56.2	419
141	A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization. <i>Diabetes</i> , 2012 , 61, 3139-47	0.9	42
140	Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. <i>Cell Metabolism</i> , 2012 , 16, 665-71	24.6	53
139	Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. <i>International Journal of Neuropsychopharmacology</i> , 2012 , 15, 163-79	5.8	63

138	Lipocalin prostaglandin D synthase and PPAR coordinate to regulate carbohydrate and lipid metabolism in vivo. <i>PLoS ONE</i> , 2012 , 7, e39512	3.7	16
137	Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor- Coactivator 1-Knock Out Mice on a High Fat Diet. <i>Metabolites</i> , 2012 , 2, 366-81	5.6	6
136	The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice. <i>Free Radical Biology and Medicine</i> , 2012 , 52, 841-9	7.8	127
135	Ablation of Pparg2 impairs lipolysis and reveals murine strain differences in lipolytic responses. <i>FASEB Journal</i> , 2012 , 26, 1835-44	0.9	12
134	Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. <i>DMM Disease Models and Mechanisms</i> , 2012 , 5, 636-48	4.1	26
133	Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. <i>Diabetes</i> , 2012 , 61, 807-17	0.9	129
132	Peroxisome proliferator-activated receptor Edependent regulation of lipolytic nodes and metabolic flexibility. <i>Molecular and Cellular Biology</i> , 2012 , 32, 1555-65	4.8	44
131	Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis. <i>Diabetes</i> , 2012 , 61, 915-24	0.9	64
130	Prediction of weight loss and regain following dietary, lifestyle, and pharmacologic intervention. <i>Clinical Pharmacology and Therapeutics</i> , 2012 , 91, 1027-34	6.1	8
129	NPs heart hormones that regulate brown fat?. <i>Journal of Clinical Investigation</i> , 2012 , 122, 804-7	15.9	21
128	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. <i>Nature Genetics</i> , 2011 , 43, 753-60	36.3	237
127	Using brown adipose tissue to treat obesity - the central issue. <i>Trends in Molecular Medicine</i> , 2011 , 17, 405-11	11.5	109
126	Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough?. <i>Journal of Diabetes Investigation</i> , 2011 , 2, 341-50	3.9	10
125	Could increased time spent in a thermal comfort zone contribute to population increases in obesity?. <i>Obesity Reviews</i> , 2011 , 12, 543-51	10.6	81
124	Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass. <i>BMC Medical Genomics</i> , 2011 , 4, 86	3.7	14
123	Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. <i>Reviews in Endocrine and Metabolic Disorders</i> , 2011 , 12, 127-40	10.5	59
122	Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPAREdefective (P465L) mice. <i>Particle and Fibre Toxicology</i> , 2011 , 8, 28	8.4	5
121	Postprandial inflammatory response in adipose tissue of patients with metabolic syndrome after the intake of different dietary models. <i>Molecular Nutrition and Food Research</i> , 2011 , 55, 1759-70	5.9	38

120	Ghrelin and lipid metabolism: key partners in energy balance. <i>Journal of Molecular Endocrinology</i> , 2011 , 46, R43-63	4.5	51
119	Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. <i>Diabetes</i> , 2011 , 60, 797-809	0.9	248
118	Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2011 , 14, 520)-6 ^{3.8}	46
117	PGC-1Ideficiency accelerates the transition to heart failure in pressure overload hypertrophy. <i>Circulation Research</i> , 2011 , 109, 783-93	15.7	110
116	Deletion of the metabolic transcriptional coactivator PGC1 Induces cardiac arrhythmia. <i>Cardiovascular Research</i> , 2011 , 92, 29-38	9.9	23
115	Nothing Iffy about HIF in the Hypothalamus. <i>PLoS Biology</i> , 2011 , 9, e1001116	9.7	9
114	Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. <i>PLoS Biology</i> , 2011 , 9, e1000623	9.7	169
113	Olanzapine-induced hyperphagia and weight gain associate with orexigenic hypothalamic neuropeptide signaling without concomitant AMPK phosphorylation. <i>PLoS ONE</i> , 2011 , 6, e20571	3.7	79
112	Genome-wide profiling of microRNAs in adipose mesenchymal stem cell differentiation and mouse models of obesity. <i>PLoS ONE</i> , 2011 , 6, e21305	3.7	39
111	Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. <i>International Journal of Obesity</i> , 2010 , 34, 1695-705	5.5	60
110	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. <i>Nature Medicine</i> , 2010 , 16, 1001-8	50.5	502
109	DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circulation Research, 2010, 107, 1021-31	15.7	168
108	Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. <i>FASEB Journal</i> , 2010 , 24, 2670-9	0.9	95
107	LEM-PCR: a method for determining relative transcript isoform proportions using real-time PCR without a standard curve. <i>Genome</i> , 2010 , 53, 637-42	2.4	5
106	Extracellular fatty acid synthase: a possible surrogate biomarker of insulin resistance. <i>Diabetes</i> , 2010 , 59, 1506-11	0.9	38
105	The obese healthy paradox: is inflammation the answer?. <i>Biochemical Journal</i> , 2010 , 430, 141-9	3.8	133
104	Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers. <i>Physics in Medicine and Biology</i> , 2010 , 55, 6867-79	3.8	10
103	No association between polymorphisms in the INSIG1 gene and the risk of type 2 diabetes and related traits. <i>American Journal of Clinical Nutrition</i> , 2010 , 92, 252-7	7	8

102	PPARs and adipocyte function. <i>Molecular and Cellular Endocrinology</i> , 2010 , 318, 61-8	4.4	101
101	Adipose tissue expandability, lipotoxicity and the Metabolic Syndromean allostatic perspective. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2010 , 1801, 338-49	5	622
100	Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2010 , 1801, 400-	. 4	52
99	Abdominal subcutaneous adipose tissue morphology in a patient with a dominant-negative mutation (P467L) in the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG) gene. <i>Nutrition, Metabolism and Cardiovascular Diseases</i> , 2010 , 20, e11-2	4.5	2
98	Wnt signalling and the control of cellular metabolism. <i>Biochemical Journal</i> , 2010 , 427, 1-17	3.8	155
97	An allostatic control of membrane lipid composition by SREBP1. FEBS Letters, 2010 , 584, 2689-98	3.8	80
96	Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. <i>Free Radical Biology and Medicine</i> , 2010 , 48, 161-72	7.8	157
95	Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13100-5	11.5	50
94	Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome. <i>DMM Disease Models and Mechanisms</i> , 2009 , 2, 582-92	4.1	38
93	Defective peroxisomal proliferators activated receptor gamma activity due to dominant-negative mutation synergizes with hypertension to accelerate cardiac fibrosis in mice. <i>European Journal of Heart Failure</i> , 2009 , 11, 533-41	12.3	25
92	Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. <i>Nature Medicine</i> , 2009 , 15, 259-66	50.5	246
91	CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. <i>Cell Metabolism</i> , 2009 , 9, 339-49	24.6	119
90	Adipogenesis and WNT signalling. <i>Trends in Endocrinology and Metabolism</i> , 2009 , 20, 16-24	8.8	420
89	Integrating post-genomic approaches as a strategy to advance our understanding of health and disease. <i>Genome Medicine</i> , 2009 , 1, 35	14.4	19
88	Metabolic phenotyping of a model of adipocyte differentiation. <i>Physiological Genomics</i> , 2009 , 39, 109-19	93.6	70
87	Systems Biology Strategies in Studies of Energy Homeostasis In Vivo 2009 , 354-360		
86	The metabolic syndrome: Where do we go from here?. <i>Biochemist</i> , 2009 , 31, 14-18	0.5	
85	PGC-1beta: a co-activator that sets the tone for both basal and stress-stimulated mitochondrial activity. <i>Advances in Experimental Medicine and Biology</i> , 2009 , 646, 133-9	3.6	11

(2008-2008)

84	UCPsunlikely calcium porters. <i>Nature Cell Biology</i> , 2008 , 10, 1235-7; author reply 1237-40	23.4	85
83	Lipidomics: a new window to biomedical frontiers. <i>Trends in Biotechnology</i> , 2008 , 26, 647-52	15.1	133
82	Informatics and computational strategies for the study of lipids. <i>Molecular BioSystems</i> , 2008 , 4, 121-7		167
81	AMPK: a metabolic gauge regulating whole-body energy homeostasis. <i>Trends in Molecular Medicine</i> , 2008 , 14, 539-49	11.5	412
80	Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. <i>Cell Metabolism</i> , 2008 , 7, 389-99	24.6	363
79	The AMPK-Malonyl-CoA-CPT1 Axis in the Control of Hypothalamic Neuronal Function R eply. <i>Cell Metabolism</i> , 2008 , 8, 176	24.6	9
78	Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. <i>Biochemical Society Transactions</i> , 2008 , 36, 935-40	5.1	121
77	Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. <i>Bioscience Reports</i> , 2008 , 28, 83-8	4.1	63
76	Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding?. <i>Physiological Genomics</i> , 2008 , 34, 1-5	3.6	36
75	Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability. <i>Endocrinology</i> , 2008 , 149, 3009-15	4.8	46
74	Serum levels of retinol-binding protein 4 and adiponectin in women with polycystic ovary syndrome: associations with visceral fat but no evidence for fat mass-independent effects on pathogenesis in this condition. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 2859-65	5.6	38
73	Central resistin regulates hypothalamic and peripheral lipid metabolism in a nutritional-dependent fashion. <i>Endocrinology</i> , 2008 , 149, 4534-43	4.8	88
72	Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. <i>Biochemical Journal</i> , 2008 , 412, 131-9	3.8	58
71	Brain lipogenesis and regulation of energy metabolism. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2008 , 11, 483-90	3.8	22
70	It's not how fat you are, it's what you do with it that counts. PLoS Biology, 2008, 6, e237	9.7	211
69	A prevalent variant in PPP1R3A impairs glycogen synthesis and reduces muscle glycogen content in humans and mice. <i>PLoS Medicine</i> , 2008 , 5, e27	11.6	33
68	Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. <i>PLoS ONE</i> , 2008 , 3, e3613	3.7	137
67	Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. <i>Diabetologia</i> , 2008 , 51, 147-54	10.3	73

66	Critical assessment of the current guidelines for the management and treatment of morbidly obese patients. <i>Journal of Endocrinological Investigation</i> , 2007 , 30, 844-52	5.2	31
65	Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. <i>BioEssays</i> , 2007 , 29, 248-61	4.1	113
64	Orexin expression is regulated by alpha-melanocyte-stimulating hormone. <i>Journal of Neuroendocrinology</i> , 2007 , 19, 703-7	3.8	22
63	Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. <i>BMC Systems Biology</i> , 2007 , 1, 12	3.5	204
62	Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. <i>Diabetes Care</i> , 2007 , 30, 1717-23	14.6	167
61	Role of PPARIIn adipocyte recruitment and thermogenesis. <i>Expert Review of Endocrinology and Metabolism</i> , 2007 , 2, 641-651	4.1	1
60	PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. <i>PLoS Genetics</i> , 2007 , 3, e64	6	304
59	IGF-binding protein-2 protects against the development of obesity and insulin resistance. <i>Diabetes</i> , 2007 , 56, 285-94	0.9	187
58	Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). <i>Public Health Nutrition</i> , 2007 , 10, 1132-7	3.3	133
57	A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. <i>Journal of the American College of Nutrition</i> , 2007 , 26, 434-44	3.5	154
56	Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. <i>Journal of Clinical Investigation</i> , 2007 , 117, 2539-52	15.9	166
55	Anaplerotic roles of pyruvate carboxylase in mammalian tissues. <i>Cellular and Molecular Life Sciences</i> , 2006 , 63, 843-54	10.3	130
54	Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. <i>Diabetologia</i> , 2006 , 49, 552-61	10.3	29
53	WNT10B mutations in human obesity. <i>Diabetologia</i> , 2006 , 49, 678-84	10.3	103
52	Decreased brown adipocyte recruitment and thermogenic capacity in mice with impaired peroxisome proliferator-activated receptor (P465L PPARgamma) function. <i>Endocrinology</i> , 2006 , 147, 5708-14	4.8	52
51	Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. <i>PLoS Biology</i> , 2006 , 4, e369	9.7	217
50	Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice. <i>Diabetes</i> , 2006 , 55, 2669-77	0.9	71
49	The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. <i>Journal of Cell Science</i> , 2006 , 119, 2613-2620	5.3	128

(2003-2006)

48	Metabolomic approaches to phenotype characterization and applications to complex diseases. <i>Expert Review of Molecular Diagnostics</i> , 2006 , 6, 575-85	3.8	82
47	Lipotoxicity, overnutrition and energy metabolism in aging. <i>Ageing Research Reviews</i> , 2006 , 5, 144-64	12	170
46	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. <i>FASEB Journal</i> , 2005 , 19, 1108-19	0.9	73
45	Visfatin: the missing link between intra-abdominal obesity and diabetes?. <i>Trends in Molecular Medicine</i> , 2005 , 11, 344-7	11.5	191
44	Role of PPARs in the Pathogenesis of the Metabolic Syndrome 2005 , 253-269		
43	Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. <i>Biochemical Journal</i> , 2005 , 386, 505-13	3.8	43
42	Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. <i>Obesity</i> , 2005 , 13, 662-9		151
41	Pathways to the analysis of microarray data. <i>Trends in Biotechnology</i> , 2005 , 23, 429-35	15.1	229
40	The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform. <i>Diabetes</i> , 2005 , 54, 1706-16	0.9	139
39	Nuclear receptor corepressor RIP140 regulates fat accumulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 8437-42	11.5	306
38	Genetic variants in human sterol regulatory element binding protein-1c in syndromes of severe insulin resistance and type 2 diabetes. <i>Diabetes</i> , 2004 , 53, 842-6	0.9	46
37	Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis. <i>Journal of Biological Chemistry</i> , 2004 , 279, 11711-8	5.4	40
36	ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. <i>Molecular and Cellular Biology</i> , 2004 , 24, 9863-72	4.8	68
35	Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. <i>International Journal of Obesity</i> , 2004 , 28, 176-9	5.5	152
34	Signalling activity of beta-catenin targeted to different subcellular compartments. <i>Biochemical Journal</i> , 2004 , 379, 471-7	3.8	36
33	Insulin Resistance and Cardiovascular Disease: New Insights from Genetics. <i>Handbook of Experimental Pharmacology</i> , 2004 , 243-279	3.2	
32	Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. <i>Diabetes</i> , 2003 , 52, 910-7	0.9	361
31	Acute endurance exercise increases skeletal muscle uncoupling protein-3 gene expression in untrained but not trained humans. <i>Metabolism: Clinical and Experimental</i> , 2003 , 52, 152-8	12.7	19

30	PPARgamma and the thiazolidinediones: molecular basis for a treatment of 'Syndrome X'?. <i>Diabetes, Obesity and Metabolism</i> , 2002 , 4, 239-48	6.7	17
29	Digenic inheritance of severe insulin resistance in a human pedigree. <i>Nature Genetics</i> , 2002 , 31, 379-84	36.3	121
28	Regional differences in the response of human pre-adipocytes to PPARgamma and RXRalpha agonists. <i>Diabetes</i> , 2002 , 51, 718-23	0.9	86
27	Differential effects of adiposity on peroxisomal proliferator-activated receptor gamma1 and gamma2 messenger ribonucleic acid expression in human adipocytes. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2002 , 87, 4203-7	5.6	31
26	Lamin expression in human adipose cells in relation to anatomical site and differentiation state. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 728-34	5.6	31
25	Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 2002 , 294, 324-8	3.4	82
24	Resistin: a new link between obesity and insulin resistance?. Clinical Endocrinology, 2001, 55, 437-8	3.4	38
23	Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. <i>Journal of Biological Chemistry</i> , 2001 , 276, 12520-9	5.4	62
22	Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. <i>Diabetes</i> , 2001 , 50, 2199-202	0.9	637
21	Genetic and physiologic analysis of the role of uncoupling protein 3 in human energy homeostasis. <i>Diabetes</i> , 1999 , 48, 1890-5	0.9	45
20	The long isoform uncoupling protein-3 (UCP3L) in human energy homeostasis. <i>International Journal of Obesity</i> , 1999 , 23 Suppl 6, S49-50	5.5	5
19	Effects of obesity and stable weight reduction on UCP2 and UCP3 gene expression in humans. <i>Obesity</i> , 1999 , 7, 133-40		48
18	Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 261, 870-6	3.4	91
17	Leptin in relation to resumption of menses in women with anorexia nervosa. <i>Molecular Psychiatry</i> , 1998 , 3, 544-7	15.1	87
16	Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-gamma. <i>Journal of Clinical Endocrinology and Metabolism</i> , 1998 , 83, 2830-5	5.6	82
15	Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements. <i>Diabetes</i> , 1998 , 47, 1464-71	0.9	32
14	The human uncoupling protein-3 gene. Genomic structure, chromosomal localization, and genetic basis for short and long form transcripts. <i>Journal of Biological Chemistry</i> , 1997 , 272, 25433-6	5.4	131
13	The organization, promoter analysis, and expression of the human PPARgamma gene. <i>Journal of Biological Chemistry</i> , 1997 , 272, 18779-89	5.4	889

LIST OF PUBLICATIONS

12	UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 235, 79-	8 2 ·4	639
11	Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. <i>Journal of Clinical Investigation</i> , 1996 , 97, 2553-61	15.9	502
10	Candidate genes for insulin resistance. <i>Diabetes Care</i> , 1996 , 19, 396-400	14.6	58
9	Genetic variability in the TNF-alpha promoter is not associated with type II diabetes mellitus (NIDDM). <i>Biochemical and Biophysical Research Communications</i> , 1995 , 211, 833-9	3.4	125
8	Analysis of the hexokinase II gene in subjects with insulin resistance and NIDDM and detection of a Gln142>His substitution. <i>Diabetes</i> , 1995 , 44, 340-6	0.9	21
7	Hyperinsulinemia in polycystic ovary syndrome: relationship to clinical and hormonal factors. <i>The Clinical Investigator</i> , 1994 , 72, 853-7		8
6	Reduction of endogenous, ovarian and adrenal androgens with ketoconazole does not alter insulin response in the polycystic ovary syndrome. <i>Journal of Endocrinological Investigation</i> , 1994 , 17, 647-52	5.2	6
5	Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. <i>BioTechniques</i> , 1994 , 17, 490-2, 494, 496	2.5	55
4	Dehydroepiandrosterone sulfate and other possible influencing factors that modulate sex hormone-binding globulin levels in the hirsute patient. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1992 , 42, 607-11	5.1	5
3	Lamin Expression in Human Adipose Cells in Relation to Anatomical Site and Differentiation State		16
2	Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity		1
1	Harnessing natural diversity to identify key amino acid residues in prolidase		4