Antonio Vidal-Puig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202233/publications.pdf Version: 2024-02-01

		4942	7333
288	26,213	84	152
papers	citations	h-index	g-index
311	311	311	33475
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Organization, Promoter Analysis, and Expression of the Human PPARÎ ³ Gene. Journal of Biological Chemistry, 1997, 272, 18779-18789.	1.6	1,034
2	Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — An allostatic perspective. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 338-349.	1.2	748
3	Resistin / Fizz3 Expression in Relation to Obesity and Peroxisome Proliferator-Activated Receptor-Â Action in Humans. Diabetes, 2001, 50, 2199-2202.	0.3	716
4	UCP3: An Uncoupling Protein Homologue Expressed Preferentially and Abundantly in Skeletal Muscle and Brown Adipose Tissue. Biochemical and Biophysical Research Communications, 1997, 235, 79-82.	1.0	697
5	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	15.2	581
6	Regulation of PPAR gamma gene expression by nutrition and obesity in rodents Journal of Clinical Investigation, 1996, 97, 2553-2561.	3.9	574
7	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	3.5	527
8	Adipogenesis and WNT signalling. Trends in Endocrinology and Metabolism, 2009, 20, 16-24.	3.1	491
9	BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell, 2012, 149, 871-885.	13.5	481
10	AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in Molecular Medicine, 2008, 14, 539-549.	3.5	465
11	Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism, 2008, 7, 389-399.	7.2	417
12	Human Metabolic Syndrome Resulting From Dominant-Negative Mutations in the Nuclear Receptor Peroxisome Proliferator-Activated Receptor-Â. Diabetes, 2003, 52, 910-917.	0.3	412
13	The different shades of fat. Nature, 2014, 510, 76-83.	13.7	378
14	PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. PLoS Genetics, 2007, 3, e64.	1.5	346
15	Nuclear receptor corepressor RIP140 regulates fat accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8437-8442.	3.3	337
16	GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 2020, 578, 444-448.	13.7	326
17	Coordination of PGC-1Î ² and iron uptake in mitochondrial biogenesis and osteoclast activation. Nature Medicine, 2009, 15, 259-266.	15.2	315
18	Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 2016, 59, 1075-1088.	2.9	298

#	Article	IF	CITATIONS
19	Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice. Diabetes, 2011, 60, 797-809.	0.3	297
20	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genetics, 2011, 43, 753-760.	9.4	289
21	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metabolism, 2019, 29, 707-718.e8.	7.2	286
22	Pathways to the analysis of microarray data. Trends in Biotechnology, 2005, 23, 429-435.	4.9	269
23	Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends in Endocrinology and Metabolism, 2017, 28, 3-18.	3.1	268
24	Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance. PLoS Biology, 2006, 4, e369.	2.6	249
25	It's Not How Fat You Are, It's What You Do with It That Counts. PLoS Biology, 2008, 6, e237.	2.6	244
26	Visfatin: the missing link between intra-abdominal obesity and diabetes?. Trends in Molecular Medicine, 2005, 11, 344-347.	3.5	238
27	Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Systems Biology, 2007, 1, 12.	3.0	234
28	IGF-Binding Protein-2 Protects Against the Development of Obesity and Insulin Resistance. Diabetes, 2007, 56, 285-294.	0.3	231
29	Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans. Circulation, 2013, 128, 702-712.	1.6	218
30	Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans. PLoS Biology, 2011, 9, e1000623.	2.6	213
31	Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Research Reviews, 2006, 5, 144-164.	5.0	206
32	Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Science Translational Medicine, 2020, 12, .	5.8	205
33	DNA Damage Links Mitochondrial Dysfunction to Atherosclerosis and the Metabolic Syndrome. Circulation Research, 2010, 107, 1021-1031.	2.0	199
34	Monounsaturated Fat-Rich Diet Prevents Central Body Fat Distribution and Decreases Postprandial Adiponectin Expression Induced by a Carbohydrate-Rich Diet in Insulin-Resistant Subjects. Diabetes Care, 2007, 30, 1717-1723.	4.3	197
35	Wnt signalling and the control of cellular metabolism. Biochemical Journal, 2010, 427, 1-17.	1.7	196
36	Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radical Biology and Medicine, 2010, 48, 161-172.	1.3	193

#	Article	IF	CITATIONS
37	Beyond the Sympathetic Tone: The New Brown Fat Activators. Cell Metabolism, 2013, 17, 638-643.	7.2	191
38	Informatics and computational strategies for the study of lipids. Molecular BioSystems, 2008, 4, 121-127.	2.9	189
39	A MUFA-Rich Diet Improves Posprandial Glucose, Lipid and GLP-1 Responses in Insulin-Resistant Subjects. Journal of the American College of Nutrition, 2007, 26, 434-444.	1.1	187
40	Brain fatty acid synthase activates PPARÎ \pm to maintain energy homeostasis. Journal of Clinical Investigation, 2007, 117, 2539-2552.	3.9	183
41	Expression of the thermogenic nuclear hormone receptor coactivator PGC-11± is reduced in the adipose tissue of morbidly obese subjects. International Journal of Obesity, 2004, 28, 176-179.	1.6	180
42	Regulation of Adiponectin Expression in Human Adipocytes: Effects of Adiposity, Glucocorticoids, and Tumor Necrosis Factor α. Obesity, 2005, 13, 662-669.	4.0	177
43	Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature, 2015, 525, 124-128.	13.7	174
44	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	7.2	167
45	Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1). Public Health Nutrition, 2007, 10, 1132-1137.	1.1	165
46	The Human Uncoupling Protein-3 Gene. Journal of Biological Chemistry, 1997, 272, 25433-25436.	1.6	164
47	Lipidomics: a new window to biomedical frontiers. Trends in Biotechnology, 2008, 26, 647-652.	4.9	160
48	Mitochondrial Fusion Is Increased by the Nuclear Coactivator PGC-1Î ² . PLoS ONE, 2008, 3, e3613.	1.1	159
49	The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.	0.3	157
50	Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1899-1912.	0.6	157
51	The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/–/ApoE–/– mice. Free Radical Biology and Medicine, 2012, 52, 841-849.	1.3	154
52	The obese healthy paradox: is inflammation the answer?. Biochemical Journal, 2010, 430, 141-149.	1.7	151
53	CXC Ligand 5 Is an Adipose-Tissue Derived Factor that Links Obesity to Insulin Resistance. Cell Metabolism, 2009, 9, 339-349.	7.2	148
54	Nicotine Induces Negative Energy Balance Through Hypothalamic AMP-Activated Protein Kinase. Diabetes, 2012, 61, 807-817.	0.3	147

#	Article	IF	CITATIONS
55	Genetic Variability in the TNF-α Promoter Is Not Associated with Type II Diabetes Mellitus (NIDDM). Biochemical and Biophysical Research Communications, 1995, 211, 833-839.	1.0	146
56	Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes, 2015, 64, 3121-3134.	0.3	146
57	Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochemical Society Transactions, 2008, 36, 935-940.	1.6	143
58	Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cellular and Molecular Life Sciences, 2006, 63, 843-854.	2.4	138
59	The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. Journal of Cell Science, 2006, 119, 2613-2620.	1.2	138
60	Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology, 2017, 65, 1165-1180.	3.6	138
61	PGC-1Î ² Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy. Circulation Research, 2011, 109, 783-793.	2.0	136
62	Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. Advances in Experimental Medicine and Biology, 2017, 960, 161-196.	0.8	136
63	Digenic inheritance of severe insulin resistance in a human pedigree. Nature Genetics, 2002, 31, 379-384.	9.4	134
64	WNT10B mutations in human obesity. Diabetologia, 2006, 49, 678-684.	2.9	127
65	Hypothalamic fatty acid metabolism: A housekeeping pathway that regulates food intake. BioEssays, 2007, 29, 248-261.	1.2	127
66	Using brown adipose tissue to treat obesity – the central issue. Trends in Molecular Medicine, 2011, 17, 405-411.	3.5	127
67	PPARs and adipocyte function. Molecular and Cellular Endocrinology, 2010, 318, 61-68.	1.6	119
68	A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. American Journal of Human Genetics, 2014, 95, 584-589.	2.6	119
69	An allostatic control of membrane lipid composition by SREBP1. FEBS Letters, 2010, 584, 2689-2698.	1.3	117
70	PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. International Journal of Molecular Sciences, 2018, 19, 2124.	1.8	116
71	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	2.9	109
72	Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB Journal, 2010, 24, 2670-2679.	0.2	108

#	Article	IF	CITATIONS
73	Could increased time spent in a thermal comfort zone contribute to population increases in obesity?. Obesity Reviews, 2011, 12, 543-551.	3.1	104
74	Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nature Communications, 2018, 9, 4974.	5.8	104
75	Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology, 2008, 149, 4534-4543.	1.4	102
76	Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation. PLoS ONE, 2011, 6, e20571.	1.1	101
77	Leptin in relation to resumption of menses in women with anorexia nervosa. Molecular Psychiatry, 1998, 3, 544-547.	4.1	99
78	Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes and Endocrinology,the, 2013, 1, 353-360.	5.5	97
79	Role of the β3-Adrenergic Receptor and/or a Putative β4-Adrenergic Receptor on the Expression of Uncoupling Proteins and Peroxisome Proliferator-Activated Receptor-γ Coactivator-1. Biochemical and Biophysical Research Communications, 1999, 261, 870-876.	1.0	96
80	Increasing Circulating IGFBP1 Levels Improves Insulin Sensitivity, Promotes Nitric Oxide Production, Lowers Blood Pressure, and Protects Against Atherosclerosis. Diabetes, 2012, 61, 915-924.	0.3	96
81	Sphingolipids and glycerophospholipids – The "ying and yang―of lipotoxicity in metabolic diseases. Progress in Lipid Research, 2017, 66, 14-29.	5.3	96
82	Regional Differences in the Response of Human Pre-Adipocytes to PPARÂ and RXRÂ Agonists. Diabetes, 2002, 51, 718-723.	0.3	94
83	Troglitazone Effects on Gene Expression in Human Skeletal Muscle of Type II Diabetes Involve Up-Regulation of Peroxisome Proliferator-Activated Receptor-γ1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2830-2835.	1.8	89
84	UCPs — unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	4.6	88
85	Characterisation of the phosphorylation of β-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 2002, 294, 324-328.	1.0	87
86	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB Journal, 2005, 19, 1108-1119.	0.2	87
87	Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia, 2007, 51, 147-154.	2.9	86
88	Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Review of Molecular Diagnostics, 2006, 6, 575-585.	1.5	84
89	Visceral Fat Accumulation During Lipid Overfeeding Is Related to Subcutaneous Adipose Tissue Characteristics in Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 802-810.	1.8	84
90	GTTs and ITTs in mice: simple tests, complex answers. Nature Metabolism, 2021, 3, 883-886.	5.1	84

#	Article	IF	CITATIONS
91	Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biology, 2018, 19, 79.	3.8	83
92	Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nature Communications, 2021, 12, 1905.	5.8	82
93	Leptin Deficiency Unmasks the Deleterious Effects of Impaired Peroxisome Proliferator-Activated Receptor Function (P465L PPARÂ) in Mice. Diabetes, 2006, 55, 2669-2677.	0.3	80
94	Assessment of brown adipose tissue function. Frontiers in Physiology, 2013, 4, 128.	1.3	80
95	Dietary stearic acid regulates mitochondria in vivo in humans. Nature Communications, 2018, 9, 3129.	5.8	80
96	Metabolic phenotyping of a model of adipocyte differentiation. Physiological Genomics, 2009, 39, 109-119.	1.0	78
97	Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. International Journal of Obesity, 2010, 34, 1695-1705.	1.6	78
98	Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Molecular Metabolism, 2016, 5, 19-33.	3.0	78
99	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.3	76
100	Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Reports, 2019, 27, 3385-3400.e3.	2.9	76
101	Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology, 2021, 73, 1028-1044.	3.6	76
102	Uncoupling Protein 3 (UCP3) Stimulates Glucose Uptake in Muscle Cells through a Phosphoinositide 3-Kinase-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 12520-12529.	1.6	75
103	ETO/MTG8 Is an Inhibitor of C/EBPβ Activity and a Regulator of Early Adipogenesis. Molecular and Cellular Biology, 2004, 24, 9863-9872.	1.1	75
104	Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Advances in Nutrition, 2017, 8, 694-704.	2.9	70
105	Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nature Metabolism, 2021, 3, 228-243.	5.1	70
106	Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Bioscience Reports, 2008, 28, 83-88.	1.1	69
107	Below Thermoneutrality, Changes in Activity Do Not Drive Changes in Total Daily Energy Expenditure between Groups of Mice. Cell Metabolism, 2012, 16, 665-671.	7.2	69
108	Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. International Journal of Neuropsychopharmacology, 2012, 15, 163-179.	1.0	69

#	Article	IF	CITATIONS
109	Obesity as a clinical and public health problem: Is there a need for a new definition based on lipotoxicity effects?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 400-404.	1.2	68
110	Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 40-50.	1.2	68
111	Transforming Growth Factor-β3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68
112	Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat. Psychopharmacology, 2012, 219, 783-794.	1.5	67
113	Candidate Genes for Insulin Resistance. Diabetes Care, 1996, 19, 396-400.	4.3	65
114	Chrelin and lipid metabolism: key partners in energy balance. Journal of Molecular Endocrinology, 2011, 46, R43-63.	1.1	65
115	Pharmacological strategies for targeting BAT thermogenesis. Trends in Pharmacological Sciences, 2013, 34, 347-355.	4.0	65
116	Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. Biochemical Journal, 2017, 474, 2489-2508.	1.7	65
117	Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochemical Journal, 2008, 412, 131-139.	1.7	64
118	Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 127-140.	2.6	64
119	Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. BioTechniques, 1994, 17, 490-2, 494, 496.	0.8	63
120	Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Reports, 2015, 11, 335-343.	2.9	59
121	Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nature Communications, 2015, 6, 8951.	5.8	59
122	Origins of metabolic complications in obesity. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 520-526.	1.3	58
123	Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13850-13855.	3.3	58
124	Decreased Brown Adipocyte Recruitment and Thermogenic Capacity in Mice with Impaired Peroxisome Proliferator-Activated Receptor (P465L PPARγ) Function. Endocrinology, 2006, 147, 5708-5714.	1.4	57
125	Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nature Medicine, 2016, 22, 771-779.	15.2	57
126	Effects of Obesity and Stable Weight Reduction on UCP2 and UCP3 Gene Expression in Humans. Obesity, 1999, 7, 133-140.	4.0	56

#	Article	IF	CITATIONS
127	Genetic Variants in Human Sterol Regulatory Element Binding Protein-1c in Syndromes of Severe Insulin Resistance and Type 2 Diabetes. Diabetes, 2004, 53, 842-846.	0.3	55
128	PGC-1α Negatively Regulates Extrasynaptic NMDAR Activity and Excitotoxicity. Journal of Neuroscience, 2012, 32, 6995-7000.	1.7	55
129	Increased Dihydroceramide/Ceramide Ratio Mediated by Defective Expression of <i>degs1</i> Impairs Adipocyte Differentiation and Function. Diabetes, 2015, 64, 1180-1192.	0.3	55
130	Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13100-13105.	3.3	54
131	Peroxisome Proliferator-Activated Receptor γ-Dependent Regulation of Lipolytic Nodes and Metabolic Flexibility. Molecular and Cellular Biology, 2012, 32, 1555-1565.	1.1	54
132	DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16088-16093.	3.3	54
133	Bsx, a Novel Hypothalamic Factor Linking Feeding with Locomotor Activity, Is Regulated by Energy Availability. Endocrinology, 2008, 149, 3009-3015.	1.4	52
134	Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6. Cell Reports, 2015, 13, 2039-2047.	2.9	52
135	Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the manifestations of the Metabolic Syndrome. Psychoneuroendocrinology, 2013, 38, 2933-2942.	1.3	51
136	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 2015, 5, 18366.	1.6	50
137	Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity. PLoS ONE, 2011, 6, e21305.	1.1	49
138	Genetic and physiologic analysis of the role of uncoupling protein 3 in human energy homeostasis. Diabetes, 1999, 48, 1890-1895.	0.3	48
139	Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. Biochemical Journal, 2005, 386, 505-513.	1.7	48
140	Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding?. Physiological Genomics, 2008, 34, 1-5.	1.0	48
141	A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes, 2012, 61, 3139-3147.	0.3	48
142	Extracellular Fatty Acid Synthase: A Possible Surrogate Biomarker of Insulin Resistance. Diabetes, 2010, 59, 1506-1511.	0.3	47
143	SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Scientific Reports, 2017, 7, 4031.	1.6	47
144	Role of the POZ Zinc Finger Transcription Factor FBI-1 in Human and Murine Adipogenesis. Journal of Biological Chemistry, 2004, 279, 11711-11718.	1.6	46

#	Article	IF	CITATIONS
145	Gateway to the metabolic syndrome. Nature Medicine, 2005, 11, 602-603.	15.2	46
146	Adipogenesis: new insights into brown adipose tissue differentiation. Journal of Molecular Endocrinology, 2013, 51, T75-T85.	1.1	46
147	Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD. Seminars in Liver Disease, 2015, 35, 250-261.	1.8	46
148	Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. ELife, 2019, 8, .	2.8	46
149	Brown and beige fat: From molecules to physiology and pathophysiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 37-50.	1.2	45
150	Resistin: a new link between obesity and insulin resistance?. Clinical Endocrinology, 2001, 55, 437-438.	1.2	44
151	A Prevalent Variant in PPP1R3A Impairs Glycogen Synthesis and Reduces Muscle Glycogen Content in Humans and Mice. PLoS Medicine, 2008, 5, e27.	3.9	44
152	Postprandial inflammatory response in adipose tissue of patients with metabolic syndrome after the intake of different dietary models. Molecular Nutrition and Food Research, 2011, 55, 1759-1770.	1.5	44
153	Adaptation and failure of pancreatic Î ² cells in murine models with different degrees of metabolic syndrome. DMM Disease Models and Mechanisms, 2009, 2, 582-592.	1.2	43
154	Serum Levels of Retinol-Binding Protein 4 and Adiponectin in Women with Polycystic Ovary Syndrome: Associations with Visceral Fat But No Evidence for Fat Mass-Independent Effects on Pathogenesis in This Condition. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2859-2865.	1.8	42
155	Adipose tissue expandability, lipotoxicity and the metabolic syndrome. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2013, 60, 39-43.	0.8	42
156	Understanding disease mechanisms with models of signaling pathway activities. BMC Systems Biology, 2014, 8, 121.	3.0	42
157	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nature Metabolism, 2019, 1, 133-146.	5.1	42
158	Signalling activity of beta-catenin targeted to different subcellular compartments. Biochemical Journal, 2004, 379, 471-477.	1.7	40
159	Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. International Journal of Obesity, 2015, 39, 1151-1160.	1.6	40
160	Pancreatic β cells control glucose homeostasis via the secretion of exosomal miRâ€⊋9 family. Journal of Extracellular Vesicles, 2021, 10, e12055.	5.5	39
161	Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements. Diabetes, 1998, 47, 1464-1471.	0.3	38
162	Critical assessment of the current guidelines for the management and treatment of morbidly obese patients. Journal of Endocrinological Investigation, 2007, 30, 844-852.	1.8	38

#	Article	IF	CITATIONS
163	Fed-EXosome: extracellular vesicles and cell–cell communication in metabolic regulation. Essays in Biochemistry, 2018, 62, 165-175.	2.1	37
164	Controlling the glucose factory. Nature, 2001, 413, 125-126.	13.7	36
165	Lamin Expression in Human Adipose Cells in Relation to Anatomical Site and Differentiation State. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 728-734.	1.8	35
166	Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. DMM Disease Models and Mechanisms, 2012, 5, 636-48.	1.2	35
167	Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility. Cell Reports, 2018, 24, 2005-2012.e7.	2.9	35
168	Differential Effects of Adiposity on Peroxisomal Proliferator-Activated Receptor γ1 and γ2 Messenger Ribonucleic Acid Expression in Human Adipocytes. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4203-4207.	1.8	34
169	Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia, 2006, 49, 552-561.	2.9	34
170	Defective glucose and lipid metabolism in rheumatoid arthritis is determined by chronic inflammation in metabolic tissues. Journal of Internal Medicine, 2018, 284, 61-77.	2.7	34
171	Defective peroxisomal proliferators activated receptor gamma activity due to dominantâ€negative mutation synergizes with hypertension to accelerate cardiac fibrosis in mice. European Journal of Heart Failure, 2009, 11, 533-541.	2.9	32
172	Phenyl-Î ³ -valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Molecular Nutrition and Food Research, 2017, 61, 1700074.	1.5	31
173	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nature Metabolism, 2020, 2, 514-531.	5.1	31
174	Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia. Cardiovascular Research, 2011, 92, 29-38.	1.8	30
175	Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 506-511.	3.3	30
176	SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nature Metabolism, 2021, 3, 1150-1162.	5.1	29
177	Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. Diabetologia, 2015, 58, 2424-2434.	2.9	28
178	Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genetics, 2016, 12, e1005916.	1.5	27
179	Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nature Communications, 2019, 10, 1546.	5.8	27
180	4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nature Metabolism, 2019, 1, 546-559.	5.1	26

#	Article	IF	CITATIONS
181	Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Archives of Biochemistry and Biophysics, 2016, 606, 73-80.	1.4	25
182	Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Molecular Metabolism, 2020, 31, 67-84.	3.0	25
183	NPs — heart hormones that regulate brown fat?. Journal of Clinical Investigation, 2012, 122, 804-807.	3.9	25
184	Acute endurance exercise increases skeletal muscle uncoupling protein-3 gene expression in untrained but not trained humans. Metabolism: Clinical and Experimental, 2003, 52, 152-158.	1.5	24
185	Orexin Expression is Regulated by ?-Melanocyte-Stimulating Hormone. Journal of Neuroendocrinology, 2007, 19, 703-707.	1.2	24
186	Meal rich in carbohydrate, but not protein or fat, reveals adverse immunometabolic responses associated with obesity. Nutrition Journal, 2016, 15, 100.	1.5	24
187	Studying Brown Adipose Tissue in a Human in vitro Context. Frontiers in Endocrinology, 2020, 11, 629.	1.5	24
188	Analysis of the Hexokinase II Gene in Subjects With Insulin Resistance and NIDDM and Detection of a Gln142→His Substitution. Diabetes, 1995, 44, 340-346.	0.3	23
189	Integrating post-genomic approaches as a strategy to advance our understanding of health and disease. Genome Medicine, 2009, 1, 35.	3.6	23
190	β2-spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Science Translational Medicine, 2021, 13, eabk2267.	5.8	23
191	Brain lipogenesis and regulation of energy metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 483-490.	1.3	22
192	Lipotoxicity: a driver of heart failure with preserved ejection fraction?. Clinical Science, 2021, 135, 2265-2283.	1.8	22
193	PPARgamma and the thiazolidinediones: molecular basis for a treatment of 'Syndrome X'?. Diabetes, Obesity and Metabolism, 2002, 4, 239-248.	2.2	21
194	Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response. Experimental Neurology, 2012, 237, 396-406.	2.0	20
195	Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Molecular Metabolism, 2021, 48, 101210.	3.0	20
196	Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Reports, 2022, 4, 100409.	2.6	20
197	Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo. PLoS ONE, 2012, 7, e39512.	1.1	19
198	Peroxisome proliferatorâ€activated receptor gammaâ€coactivatorâ€1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. European Journal of Neuroscience, 2013, 38, 2672-2683.	1.2	19

#	Article	IF	CITATIONS
199	Mild cold effects on hunger, food intake, satiety and skin temperature in humans. Endocrine Connections, 2016, 5, 65-73.	0.8	19
200	Special issue on lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 207-208.	1.2	18
201	Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Molecular Metabolism, 2019, 20, 38-50.	3.0	18
202	GPER and ERα mediate estradiol enhancement of mitochondrial function in inflamed adipocytes through a PKA dependent mechanism. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 256-267.	1.2	18
203	Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice. Molecular Metabolism, 2018, 13, 24-29.	3.0	17
204	Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation. BMJ Open Diabetes Research and Care, 2020, 8, e000945.	1.2	17
205	Obesity and pregnancy, the perfect metabolic storm. European Journal of Clinical Nutrition, 2021, 75, 1723-1734.	1.3	17
206	Regulation of adipogenic differentiation and adipose tissue inflammation by interferon regulatory factor 3. Cell Death and Differentiation, 2021, 28, 3022-3035.	5.0	17
207	Lamin Expression in Human Adipose Cells in Relation to Anatomical Site and Differentiation State. , 0, .		17
208	Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes. PLoS ONE, 2016, 11, e0162047.	1.1	17
209	Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough?. Journal of Diabetes Investigation, 2011, 2, 341-350.	1.1	16
210	Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nature Metabolism, 2022, 4, 476-494.	5.1	16
211	Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass. BMC Medical Genomics, 2011, 4, 86.	0.7	15
212	Methods for Performing Lipidomics in White Adipose Tissue. Methods in Enzymology, 2014, 538, 211-231.	0.4	15
213	Metabolic gene expression profile in circulating mononuclear cells reflects obesity-associated metabolic inflexibility. Nutrition and Metabolism, 2016, 13, 74.	1.3	15
214	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genetics, 2020, 16, e1009069.	1.5	15
215	The AMPK-Malonyl-CoA-CPT1 Axis in the Control of Hypothalamic Neuronal Function—Reply. Cell Metabolism, 2008, 8, 176.	7.2	14
216	Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers. Physics in Medicine and Biology, 2010, 55, 6867-6879.	1.6	14

#	Article	IF	CITATIONS
217	Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in InsrP1195L/+ mice fed high-fat-diet. Scientific Reports, 2015, 5, 17565.	1.6	14
218	The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. Science Advances, 2020, 6, .	4.7	14
219	Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Molecular Metabolism, 2020, 40, 101020.	3.0	14
220	Harnessing the beneficial properties of adipogenic microbes for improving human health. Obesity Reviews, 2013, 14, 721-735.	3.1	13
221	PGC-1β: A Co-activator That Sets the Tone for Both Basal and Stress-Stimulated Mitochondrial Activity. Advances in Experimental Medicine and Biology, 2009, 646, 133-139.	0.8	13
222	Nothing Iffy about HIF in the Hypothalamus. PLoS Biology, 2011, 9, e1001116.	2.6	12
223	Ablation of Pparg2 impairs lipolysis and reveals murine strain differences in lipolytic responses. FASEB Journal, 2012, 26, 1835-1844.	0.2	12
224	No association between polymorphisms in the INSIG1 gene and the risk of type 2 diabetes and related traits. American Journal of Clinical Nutrition, 2010, 92, 252-257.	2.2	11
225	Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men—Not in Women. Diabetes, 2021, 70, 1473-1485.	0.3	11
226	Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Molecular Metabolism, 2021, 48, 101220.	3.0	11
227	Norepinephrine promotes triglyceride storage in macrophages via beta2â€adrenergic receptor activation. FASEB Journal, 2021, 35, e21266.	0.2	11
228	Hyperinsulinemia in polycystic ovary syndrome: relationship to clinical and hormonal factors. The Clinical Investigator, 1994, 72, 853-7.	0.6	10
229	Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice. Stress, 2016, 19, 214-224.	0.8	10
230	Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 2092.	1.8	10
231	Unraveling the Developmental Roadmap toward Human Brown Adipose Tissue. Stem Cell Reports, 2021, 16, 641-655.	2.3	10
232	A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. Analytical and Bioanalytical Chemistry, 2021, 413, 4763-4773.	1.9	10
233	Prediction of Weight Loss and Regain Following Dietary, Lifestyle, and Pharmacologic Intervention. Clinical Pharmacology and Therapeutics, 2012, 91, 1027-1034.	2.3	9
234	When BAT is lacking, WAT steps up. Cell Research, 2013, 23, 868-869.	5.7	9

#	Article	IF	CITATIONS
235	Calcium Channel CaV2.3 Subunits Regulate Hepatic Glucose Production by Modulating Leptin-Induced Excitation of Arcuate Pro-opiomelanocortin Neurons. Cell Reports, 2018, 25, 278-287.e4.	2.9	9
236	Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Scientific Reports, 2021, 11, 7717.	1.6	8
237	LEM-PCR: a method for determining relative transcript isoform proportions using real-time PCR without a standard curve. Genome, 2010, 53, 637-642.	0.9	7
238	Fat storageâ€inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes. FASEB Journal, 2019, 33, 430-440.	0.2	7
239	Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Scientific Reports, 2019, 9, 2903.	1.6	7
240	Reduction of endogenous, ovarian and adrenal androgens with ketoconazole does not alter insulin response in the polycystic ovary syndrome. Journal of Endocrinological Investigation, 1994, 17, 647-652.	1.8	6
241	Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARÎ ³ -defective (P465L) mice. Particle and Fibre Toxicology, 2011, 8, 28.	2.8	6
242	The Obese Species: a special issue on obesity and metabolic disorders. DMM Disease Models and Mechanisms, 2012, 5, 563-564.	1.2	6
243	Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-Î ³ Coactivator 1-Î ² Knock Out Mice on a High Fat Diet. Metabolites, 2012, 2, 366-381.	1.3	6
244	Cytoskeletal transgelin 2 contributes to genderâ€dependent adipose tissue expandability and immune function. FASEB Journal, 2019, 33, 9656-9671.	0.2	6
245	Dehydroepiandrosterone sulfate and other possible influencing factors that modulate sex hormone-binding globulin levels in the hirsute patient. Journal of Steroid Biochemistry and Molecular Biology, 1992, 42, 607-611.	1.2	5
246	The long isoform uncoupling protein-3 (UCP3L) in human energy homeostasis. International Journal of Obesity, 1999, 23, S49-S50.	1.6	5
247	Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARÎ ³ gene expression. Journal of Molecular Medicine, 2015, 93, 83-92.	1.7	5
248	No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men. American Journal of Clinical Nutrition, 2017, 106, 1197-1205.	2.2	5
249	Genes Involved in Oxidative Stress Pathways Are Differentially Expressed in Circulating Mononuclear Cells Derived From Obese Insulin-Resistant and Lean Insulin-Sensitive Individuals Following a Single Mixed-Meal Challenge. Frontiers in Endocrinology, 2019, 10, 256.	1.5	5
250	Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Scientific Reports, 2021, 11, 17571.	1.6	5
251	What is the most appropriate covariate in ANCOVA when analysing metabolic rate?. Nature Metabolism, 2021, 3, 1585-1585.	5.1	5
252	TRIM24 is an insulin-responsive regulator of P-bodies. Nature Communications, 2022, 13, .	5.8	5

#	Article	IF	CITATIONS
253	â€ [~] Basic and Applied Thermogenesis Research' Bridging the Gap. Trends in Endocrinology and Metabolism, 2018, 29, 5-7.	3.1	4
254	P465Lâ€PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes, Obesity and Metabolism, 2018, 20, 2339-2350.	2.2	4
255	Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. International Journal of Molecular Sciences, 2019, 20, 4448.	1.8	4
256	Editorial: Brown Adipose Tissue: From Heat Production in Rodents to Metabolic Health in Humans. Frontiers in Endocrinology, 2021, 12, 739065.	1.5	4
257	The Metabolic Syndrome and its Complex Pathophysiology. , 2014, , 3-16.		4
258	Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway. IScience, 2022, 25, 104267.	1.9	4
259	"Obesityâ€associated metabolic complications, the second wave of the tsunami―14th Key Symposium. Journal of Internal Medicine, 2018, 284, 447-449.	2.7	3
260	Dietary PUFAs drive diverse system-level changes in lipid metabolism. Molecular Metabolism, 2022, 59, 101457.	3.0	3
261	Abdominal subcutaneous adipose tissue morphology in a patient with a dominant-negative mutation (P467L) in the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG) gene. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, e11-e12.	1.1	2
262	Immune cells fuel the fire. Nature, 2011, 480, 46-47.	13.7	2
263	Response to Letter Regarding Article, "Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans― Circulation, 2014, 129, e408.	1.6	2
264	Review Article: An Adipocentric View of the Metabolic Syndrome and Cardiovascular Disease. Current Cardiovascular Risk Reports, 2014, 8, 1.	0.8	2
265	Allostatic hypermetabolic response in PGC1α/β heterozygote mouse despite mitochondrial defects. FASEB Journal, 2021, 35, e21752.	0.2	2
266	Role of PPARÎ ³ in adipocyte recruitment and thermogenesis. Expert Review of Endocrinology and Metabolism, 2007, 2, 641-651.	1.2	1
267	Adipose Structure (White, Brown, Beige). , 2016, , 369-396.		1
268	Reply to: â€~Browning capabilities of human primary adipose-derived stromal cells compared to SGBS cells'. Scientific Reports, 2020, 10, 9634.	1.6	1
269	Insulin and the last gasp of failing adipocytes. Nature Metabolism, 2021, 3, 1443-1444.	5.1	1
050	Dela of DDADa in the Dath a general of the Metchelia Sundrama, 2005, 252,200		

Role of PPARs in the Pathogenesis of the Metabolic Syndrome. , 2005, , 253-269.

#	Article	IF	CITATIONS
271	Corrigendum to "Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response―[Exp. Neurol. 237/2 (2012) 396–406]. Experimental Neurology, 2013, 239, 101.	2.0	Ο
272	Modelling hypothalamic pathways in diabetes and obesity. Drug Discovery Today: Disease Models, 2013, 10, e95-e100.	1.2	0
273	PS6 - 3. Plasma acylcarnitine levels have limited predictive value for metabolic characteristics as insulin sensitivity and energy expenditure. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 150-151.	0.0	0
274	Adipose Structure (White, Brown, Beige). , 2015, , 1-29.		0
275	Deriving functional beige fat from capillaries. Nature Medicine, 2016, 22, 234-236.	15.2	0
276	OP0336â€Role of systemic inflammation associated with rheumatoid arthritis in the glucose and lipid metabolism: humans, cia mouse model and in vitro studies. , 2017, , .		0
277	Obesity in theÂPathophysiology of Diabetes. , 2019, , 185-213.		0
278	Insulin Resistance and Cardiovascular Disease: New Insights from Genetics. Handbook of Experimental Pharmacology, 2004, , 243-279.	0.9	0
279	Systems Biology Strategies in Studies of Energy Homeostasis In Vivo. , 2009, , 354-360.		0
280	The metabolic syndrome: Where do we go from here?. Biochemist, 2009, 31, 14-18.	0.2	0
281	The Central Nervous System in Metabolic Syndrome. , 2014, , 137-156.		0
282	Obesidad y sÃndrome metabólico. , 2014, , 110-116.		0
283	Increased De Novo Phosphatidylcholine Synthesis in Macrophages Promotes Adipose Tissue Inflammation in Obesity. SSRN Electronic Journal, 0, , .	0.4	Ο
284	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
285	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		Ο
286	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
287	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
288	White, Brown and Beige Adipocytes: From the Tissue to the Single-Cell Level. , 2022, , .		0

White, Brown and Beige Adipocytes: From the Tissue to the Single-Cell Level. , 2022, , . 288