Nezha Badi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9202037/publications.pdf Version: 2024-02-01

Νέζην Βλοι

#	Article	IF	CITATIONS
1	Sequence-Defined Mikto-Arm Star-Shaped Macromolecules. Journal of the American Chemical Society, 2022, 144, 7236-7244.	6.6	12
2	Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. Advanced Science, 2021, 8, 2004038.	5.6	76
3	Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction. ACS Macro Letters, 2021, 10, 616-622.	2.3	25
4	Sequence-defined oligoampholytes using hydrolytically stable vinyl sulfonamides: design and UCST behaviour. Polymer Chemistry, 2021, 12, 4193-4204.	1.9	8
5	Stereocontrolled, multi-functional sequence-defined oligomers through automated synthesis. Polymer Chemistry, 2020, 11, 4271-4280.	1.9	32
6	From Sequenceâ€Ðefined Macromolecules to Macromolecular Pin Codes. Advanced Science, 2020, 7, 1903698.	5.6	47
7	Automated Synthesis Protocol of Sequenceâ€Defined Oligoâ€Urethaneâ€Amides Using Thiolactone Chemistry. Macromolecular Rapid Communications, 2019, 40, e1800685.	2.0	28
8	Structurally diverse polymers from norbornene and thiolactone containing building blocks. European Polymer Journal, 2018, 98, 246-253.	2.6	15
9	Double-Modified Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Affinity. ACS Macro Letters, 2018, 7, 1498-1502.	2.3	27
10	Multifunctional Dendrimer Formation Using Thiolactone Chemistry. Macromolecular Chemistry and Physics, 2017, 218, 1600575.	1.1	15
11	Precisely Alternating Functionalized Polyampholytes Prepared in a Single Pot from Sustainable Thiolactone Building Blocks. ACS Macro Letters, 2017, 6, 277-280.	2.3	20
12	Non-linear PEG-based thermoresponsive polymer systems. Progress in Polymer Science, 2017, 66, 54-79.	11.8	129
13	Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance. Materials Horizons, 2017, 4, 1041-1053.	6.4	111
14	Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Materials Chemistry and Physics, 2016, 175, 206-214.	2.0	22
15	Preparation of poly(ethylene imine) derivatives with precisely controlled molecular weight. European Polymer Journal, 2016, 84, 338-344.	2.6	13
16	Precision PEGylated Polymers Obtained by Sequence ontrolled Copolymerization and Postpolymerization Modification. Angewandte Chemie - International Edition, 2014, 53, 9231-9235.	7.2	36
17	Synthesis of Wellâ€Defined Polystyrene Rink Amide Soluble Supports and Their Use in Peptide Synthesis. Macromolecular Chemistry and Physics, 2014, 215, 1984-1990.	1.1	18
18	Anionic ring-opening polymerization of ethylene oxide in DMF with cyclodextrin derivatives as new initiators. Carbohydrate Polymers, 2013, 94, 323-331.	5.1	24

Nezha Badi

#	Article	IF	CITATIONS
19	Biomimetic artificial ion channels based on beta-cyclodextrin. Chemical Communications, 2013, 49, 11647.	2.2	12
20	Microstructure Control: An Underestimated Parameter in Recent Polymer Design. Macromolecular Chemistry and Physics, 2013, 214, 135-142.	1.1	58
21	Synthesis of Singleâ€Chain Sugar Arrays. Angewandte Chemie - International Edition, 2013, 52, 2335-2339.	7.2	66
22	"Inverse―synthesis of polymer bioconjugates using soluble supports. Chemical Communications, 2012, 48, 3887.	2.2	36
23	Single-chain technology using discrete synthetic macromolecules. Nature Chemistry, 2011, 3, 917-924.	6.6	348
24	β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: A novel class of mass transfer additives for aqueous organometallic catalysis. Journal of Molecular Catalysis A, 2010, 318, 8-14.	4.8	23
25	Smart bioactive surfaces. Soft Matter, 2010, 6, 705-713.	1.2	72
26	Well-defined synthetic polymers with a protein-like gelation behavior in water. Chemical Communications, 2010, 46, 4517.	2.2	47
27	Smart Polymer Surfaces: Concepts and Applications in Biosciences. Advances in Polymer Science, 2010, , 1-33.	0.4	27
28	PEG-based thermogels: Applicability in physiological media. Journal of Controlled Release, 2009, 140, 224-229.	4.8	97
29	Synthesis of Halfâ€Channels by the Anionic Polymerization of Ethylene Oxide Initiated by Modified Cyclodextrin. Advanced Materials, 2009, 21, 4054-4057.	11.1	31
30	Cationic polymerization of dienes VIII: Is the elimination of cross-linking by a bulky electron donor a general behavior in the presence of aluminium trichloride?. European Polymer Journal, 2009, 45, 837-845.	2.6	12
31	Sequence control in polymer synthesis. Chemical Society Reviews, 2009, 38, 3383.	18.7	456
32	Liquid-Phase Synthesis of Block Copolymers Containing Sequence-Ordered Segments. Journal of the American Chemical Society, 2009, 131, 9195-9197.	6.6	169
33	Thermogelation of PEG-Based Macromolecules of Controlled Architecture. Macromolecules, 2009, 42, 33-36.	2.2	90
34	Design of Thermoresponsive Materials by ATRP of Oligo(ethylene glycol)-based (Macro)monomers. ACS Symposium Series, 2009, , 189-202.	0.5	26
35	Per-O-(3-hydroxy)propyl-β-cyclodextrin: a cyclodextrin derivative bearing only primary hydroxyl groups. Carbohydrate Research, 2007, 342, 1989-1991.	1.1	9
36	Synthesis of per-2,3-di-O-heptyl-β and γ-cyclodextrins: a new kind of amphiphilic molecules bearing hydrophobic parts. Tetrahedron Letters, 2006, 47, 8925-8927.	0.7	21

#	Article	IF	CITATIONS
37	Study of the Interactions of Organic Sulfides with Active Species in the Cationic Polymerization of 1,3-Pentadiene. Polymer Bulletin, 2004, 51, 343-349.	1.7	4