Ke Xie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9201888/ke-xie-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30	2,227	20	31
papers	citations	h-index	g-index
31 ext. papers	2,533 ext. citations	11.9 avg, IF	4.97 L-index

#	Paper	IF	Citations
30	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. <i>ACS Central Science</i> , 2021 , 7, 671-680	16.8	7
29	Beneficial restacking of 2D nanomaterials for electrocatalysis: a case of MoS membranes. <i>Chemical Communications</i> , 2020 , 56, 7005-7008	5.8	12
28	Electrochemically-derived graphene oxide membranes with high stability and superior ionic sieving. <i>Chemical Communications</i> , 2019 , 55, 4075-4078	5.8	15
27	Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. <i>Journal of Membrane Science</i> , 2019 , 583, 23-30	9.6	30
26	Oxidation-Mediated Kinetic Strategies for Engineering Metal-Phenolic Networks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12563-12568	16.4	37
25	Oxidation-Mediated Kinetic Strategies for Engineering Metal Phenolic Networks. <i>Angewandte Chemie</i> , 2019 , 131, 12693-12698	3.6	4
24	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. <i>Journal of Membrane Science</i> , 2019 , 572, 38-60	9.6	115
23	Continuous assembly of a polymer on a metalBrganic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. <i>Energy and Environmental Science</i> , 2018 , 11, 544-550	35.4	93
22	Li+/ZSM-25 Zeolite as a CO2 Capture Adsorbent with High Selectivity and Improved Adsorption Kinetics, Showing CO2-Induced Framework Expansion. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1893.	3- 1 894	1 ²¹
21	Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA). <i>Chemical Engineering Journal</i> , 2018 , 336, 659-668	14.7	22
20	Ultrathin Metal-Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. <i>ACS Nano</i> , 2018 , 12, 11591-11599	16.7	68
19	MOF Scaffold for a High-Performance Mixed-Matrix Membrane. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8597-8602	16.4	37
18	MOF Scaffold for a High-Performance Mixed-Matrix Membrane. <i>Angewandte Chemie</i> , 2018 , 130, 8733-8	873 6	16
17	Pd(0) loaded Zn2(azoBDC)2(dabco) as a heterogeneous catalyst. <i>CrystEngComm</i> , 2017 , 19, 4182-4186	3.3	13
16	Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization. <i>Polymer Chemistry</i> , 2017 , 8, 1519-1526	4.9	93
15	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. <i>Journal of Membrane Science</i> , 2017 , 535, 350-356	9.6	58
14	MOF-Mediated Destruction of Cancer Using the Cell u Own Hydrogen Peroxide. <i>ACS Applied Materials & M</i>	9.5	107

LIST OF PUBLICATIONS

13	The use of reduced copper metal-organic frameworks to facilitate CuAAC click chemistry. <i>Chemical Communications</i> , 2016 , 52, 12226-12229	5.8	35
12	Exchange Method Using Acid-Solvent Synergy for Metal Drganic Framework Synthesis (EASY-MOFs) Based on a Typical Pillar-Layered Parent Structure. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1466-1469	2.3	5
11	A comparative study on conversion of porous and non-porous metalBrganic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. <i>Polyhedron</i> , 2016 , 120, 30-35	2.7	20
10	CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. <i>Journal of Membrane Science</i> , 2016 , 515, 54-62	9.6	63
9	Poly(3,4-dinitrothiophene)/SWCNT composite as a low overpotential hydrogen evolution metal-free catalyst. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 78-82	13	21
8	Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. <i>Advanced Materials</i> , 2015 , 27, 3541-5	24	573
7	Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8380-8388	13	44
6	Synthesis of well dispersed polymer grafted metal-organic framework nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 15566-9	5.8	62
5	High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. <i>Advanced Materials</i> , 2014 , 26, 4100-6	24	198
4	Advanced carbon-based nanotubes/nanocages for energy conversion and storage: synthesis, performance and mechanism 2013 ,		1
3	Carbon nanocages as supercapacitor electrode materials. Advanced Materials, 2012, 24, 347-52	24	441
2	Supercapacitor Nanostructures: Carbon Nanocages as Supercapacitor Electrode Materials (Adv. Mater. 3/2012). <i>Advanced Materials</i> , 2012 , 24, 346-346	24	6
1	Modified redox synthesis and electrochemical properties of potassium manganese oxide nanowires. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17904		8