Ligang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201814/publications.pdf

Version: 2024-02-01

45213 46918 19,687 93 47 90 citations h-index g-index papers 93 93 93 16343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amidinium additives for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 3506-3512.	5.2	11
2	Reducing Energy Disorder in Perovskite Solar Cells by Chelation. Journal of the American Chemical Society, 2022, 144, 5400-5410.	6.6	72
3	Spacer Organic Cation Engineering for Quasiâ€2D Metal Halide Perovskites and the Optoelectronic Application. Small Structures, 2022, 3, .	6.9	26
4	Molecular Hinges Stabilize Formamidiniumâ€Based Perovskite Solar Cells with Compressive Strain. Advanced Functional Materials, 2022, 32, .	7.8	50
5	Strain Modulation for Lightâ€Stable n–i–p Perovskite/Silicon Tandem Solar Cells. Advanced Materials, 2022, 34, e2201315.	11.1	45
6	Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
7	Phase transformation barrier modulation of CsPbI3 films via PbI3â° complex for efficient all-inorganic perovskite photovoltaics. Nano Energy, 2022, 99, 107388.	8.2	9
8	Balancing Energy-Level Difference for Efficient n-i-p Perovskite Solar Cells with Cu Electrode. Energy Material Advances, 2022, 2022, .	4.7	19
9	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
10	Cobalt diselenide (001) surface with short-range Co-Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Research, 2021, 14, 4848-4856.	5 . 8	17
11	Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. ACS Applied Materials & 2021, 13, 25461-25471.	4.0	7
12	Mobile Media Promotes Orientation of 2D/3D Hybrid Lead Halide Perovskite for Efficient Solar Cells. ACS Nano, 2021, 15, 8350-8362.	7.3	20
13	Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 2021, 373, 561-567.	6.0	227
14	Thermal Management Enables More Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3029-3036.	8.8	26
15	Synergistic Effects of Euâ€MOF on Perovskite Solar Cells with Improved Stability. Advanced Materials, 2021, 33, e2102947.	11.1	104
16	Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	7.1	76
17	Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule, 2021, 5, 2148-2163.	11.7	63
18	Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasiâ€2D Perovskites for Efficient Green Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2102246.	11.1	88

#	Article	IF	CITATIONS
19	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
20	Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.	1.3	18
21	Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 2021, 42, 101605.	2.0	16
22	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	3.1	28
23	The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1901566.	10.2	89
24	Probing Phase Distribution in 2D Perovskites for Efficient Device Design. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3127-3133.	4.0	39
25	Atomically Dispersed Mo Supported on Metallic Co ₉ S ₈ Nanoflakes as an Advanced Nobleâ€Metalâ€Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Advanced Energy Materials, 2020, 10, 1903137.	10.2	162
26	An <i>in situ</i> cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy and Environmental Science, 2020, 13, 4344-4352.	15.6	142
27	Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule, 2020, 4, 1961-1976.	11.7	152
28	Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. Journal of Materials Chemistry C, 2020, 8, 15351-15360.	2.7	1
29	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
30	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
31	Electronic Tunability and Mobility Anisotropy of Quasi-2D Perovskite Single Crystals with Varied Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 7610-7616.	2.1	35
32	The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis. Angewandte Chemie - International Edition, 2020, 59, 12931-12937.	7.2	27
33	The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis. Angewandte Chemie, 2020, 132, 13031-13037.	1.6	2
34	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
35	Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 14106-14113.	5.2	18
36	Recent Advances in Improving Phase Stability of Perovskite Solar Cells. Small Methods, 2020, 4, 1900877.	4.6	74

#	Article	IF	Citations
37	Microscopic Degradation in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells under Operational Stressors. Joule, 2020, 4, 1743-1758.	11.7	156
38	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie, 2020, 132, 6035-6043.	1.6	22
39	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie - International Edition, 2020, 59, 5979-5987.	7.2	29
40	Understanding the Defect Properties of Quasi-2D Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2020, 11, 3521-3528.	2.1	43
41	Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803024.	10.2	117
42	In-situ Interfacial Passivation for Stable Perovskite Solar Cells. Frontiers in Materials, 2019, 6, .	1.2	8
43	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	19.8	831
44	A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells. Advanced Materials, 2019, 31, e1900390.	11.1	101
45	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	5.8	185
46	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€√andem Structures. Solar Rrl, 2019, 3, 1900083.	3.1	10
47	Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 7338-7346.	5.2	41
48	Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 2019, 10, 815.	5.8	528
49	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	6.0	793
50	A Strategy toward New Lowâ€Dimensional Hybrid Halide Perovskites with Anionic Spacers. Small, 2019, 15, e1804152.	5.2	3
51	Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti ₃ C ₂ T _{<i>x</i>} (MXene). ACS Sustainable Chemistry and Engineering, 2019, 7, 4266-4273.	3.2	79
52	Molybdenum Oxide Nanosheets with Tunable Plasmonic Resonance: Aqueous Exfoliation Synthesis and Charge Storage Applications. Advanced Functional Materials, 2019, 29, 1806699.	7.8	55
53	Facile Water-Based Strategy for Synthesizing MoO _{3â€"<i>x</i>} Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation. ACS Omega, 2018, 3, 2193-2201.	1.6	135
54	Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 2018, 46, 45-53.	8.2	46

#	Article	IF	CITATIONS
55	Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1124-1132.	2.1	52
56	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	6.6	327
57	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	6.6	71
58	One-pot synthesis of Cu-modified HNb ₃ O ₈ nanobelts with enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 10769-10775.	5.2	7
59	Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. Solar Rrl, 2018, 2, 1800069.	3.1	13
60	Organic Inorganic Hybrid Perovskite Materials and Devices., 2018,, 282-291.		0
61	Effects of Iodine Doping on Carrier Behavior at the Interface of Perovskite Crystals: Efficiency and Stability. Crystals, 2018, 8, 185.	1.0	8
62	Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9, 2793.	5.8	189
63	Discovery of Layered Indium Hydroxide via a Hydroperoxyl Anion Coordinated Precursor at Room Temperature. Chemistry - A European Journal, 2018, 24, 15491-15494.	1.7	0
64	The investigation of an amidine-based additive in the perovskite films and solar cells. Journal of Semiconductors, 2017, 38, 014001.	2.0	6
65	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318
66	Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12034-12042.	5 . 2	64
67	Csl Preâ€Intercalation in the Inorganic Framework for Efficient and Stable FA _{1â^'} <i>_x</i> Cs <i>_x</i> Pbl ₃ (Cl) Perovskite Solar Cells. Small, 2017, 13, 1700484.	5. 2	121
68	To probe the performance of perovskite memory devices: defects property and hysteresis. Journal of Materials Chemistry C, 2017, 5, 5810-5817.	2.7	63
69	The intrinsic properties of FA $<$ sub $>(1a^*x)sub>MA<sub>xsub>PbI<sub>3sub> perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 8537-8544.$	5. 2	152
70	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	7.3	48
71	A general approach for nanoparticle composite transport materials toward efficient perovskite solar cells. Chemical Communications, 2017, 53, 11028-11031.	2.2	3
72	Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect. Nano Energy, 2017, 40, 540-549.	8.2	22

#	Article	IF	CITATIONS
73	A-Site Cation Effect on Growth Thermodynamics and Photoconductive Properties in Ultrapure Lead lodine Perovskite Monocrystalline Wires. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25985-25994.	4.0	14
74	Microstructure variations induced by excess PbX ₂ or AX within perovskite thin films. Chemical Communications, 2017, 53, 12966-12969.	2.2	9
75	A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24820-24825.	5.2	46
76	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
77	Low-Temperature TiO _{<i>x</i>} Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Description of the Cells. A	4.0	100
78	The Additive Coordination Effect on Hybrids Perovskite Crystallization and Highâ€Performance Solar Cell. Advanced Materials, 2016, 28, 9862-9868.	11.1	270
79	Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. Nano Letters, 2016, 16, 1009-1016.	4.5	479
80	Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano, 2016, 10, 218-224.	7.3	427
81	Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81.	15.6	1,890
82	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
83	Improving the TiO ₂ electron transport layer in perovskite solar cells using acetylacetonate-based additives. Journal of Materials Chemistry A, 2015, 3, 9108-9115.	5.2	104
84	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
85	Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S) ₂ Four Terminal Tandem Solar Cells. ACS Nano, 2015, 9, 7714-7721.	7.3	157
86	The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.	5.8	404
87	One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive. Journal of Photonics for Energy, 2015, 5, 057405.	0.8	45
88	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
89	The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Physical Chemistry Chemical Physics, 2015, 17, 112-116.	1.3	335
90	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	6.0	5,936

#	Article	IF	CITATIONS
91	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	4.5	1,343
92	The Effects of the Withdrawal Rate and Heat Treatment on the Microstructure of Directionally Solidified Nb-14Si-24Ti Alloy. High Temperature Materials and Processes, 2013, 32, 113-118.	0.6	1
93	Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angewandte Chemie, 0, , .	1.6	6