Clara Belzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920173/publications.pdf

Version: 2024-02-01

24915 46918 110 16,185 47 109 citations h-index g-index papers 119 119 119 18368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nutritional strategies for mucosal health: the interplay between microbes and mucin glycans. Trends in Microbiology, 2022, 30, 13-21.	3.5	35
2	How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Glycobiology, 2022, 32, 182-200.	1.3	14
3	Development of the gut microbiota in healthy children in the first ten years of life: associations with internalizing and externalizing behavior. Gut Microbes, 2022, 14, 2038853.	4.3	21
4	Differences in kinetics and dynamics of endogenous versus exogenous advanced glycation end products (AGEs) and their precursors. Food and Chemical Toxicology, 2022, 164, 112987.	1.8	22
5	Effect of antibiotics in the first week of life on faecal microbiota development. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 603-610.	1.4	9
6	Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME Journal, 2022, 16, 2144-2159.	4.4	16
7	Cross-feeding between <i>Bifidobacterium infantis</i> and <i>Anaerostipes caccae</i> on lactose and human milk oligosaccharides. Beneficial Microbes, 2021, 12, 69-83.	1.0	25
8	Breast milk urea as a nitrogen source for urease positive < i > Bifidobacterium infantis < / i > . FEMS Microbiology Ecology, 2021, 97, .	1.3	10
9	The Effects of Pro-, Pre-, and Synbiotics on Muscle Wasting, a Systematic Review—Gut Permeability as Potential Treatment Target. Nutrients, 2021, 13, 1115.	1.7	23
10	An in vitro model for microbial fructoselysine degradation shows substantial interindividual differences in metabolic capacities of human fecal slurries. Toxicology in Vitro, 2021, 72, 105078.	1.1	9
11	Probiotics-induced changes in gut microbial composition and its effects on cognitive performance after stress: exploratory analyses. Translational Psychiatry, 2021, 11, 300.	2.4	50
12	Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. Journal of Microbiological Methods, 2021, 184, 106208.	0.7	12
13	The Modified Bristol Stool Form Scale. Journal of Pediatric Gastroenterology and Nutrition, 2021, 73, 210-216.	0.9	9
14	Microbial Glycoside Hydrolases in the First Year of Life: An Analysis Review on Their Presence and Importance in Infant Gut. Frontiers in Microbiology, 2021, 12, 631282.	1.5	18
15	A Continuous Battle for Host-Derived Glycans Between a Mucus Specialist and a Glycan Generalist in vitro and in vivo. Frontiers in Microbiology, 2021, 12, 632454.	1.5	15
16	The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Applied Microbiology and Biotechnology, 2021, 105, 4833-4841.	1.7	39
17	Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for digestion and barrier defense. Scientific Reports, 2021, 11, 12808.	1.6	15
18	From Mum to Bum: An Observational Study Protocol to Follow Digestion of Human Milk Oligosaccharides and Glycoproteins from Mother to Preterm Infant. Nutrients, 2021, 13, 3430.	1.7	0

#	Article	IF	CITATIONS
19	Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Research International, 2021, 147, 110547.	2.9	41
20	Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized placebo-controlled trial in adults with type 2 diabetes. Diabetes and Metabolism, 2021, 47, 101223.	1.4	25
21	Postbiotics â€" when simplification fails to clarify. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 825-826.	8.2	63
22	No interplay between gut microbiota composition and the lipopolysaccharideâ€induced innate immune response in humans in vivo. Clinical and Translational Immunology, 2021, 10, e1278.	1.7	3
23	Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiology, 2021, 21, 298.	1.3	10
24	Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer. BMC Microbiology, 2021, 21, 297.	1.3	11
25	Characterization of increased mucus production of HT29-MTX-E12 cells grown under Semi-Wet interface with Mechanical Stimulation. PLoS ONE, 2021, 16, e0261191.	1.1	8
26	Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutritional Neuroscience, 2020, 23, 896-910.	1.5	27
27	<i>Akkermansia muciniphila</i> Exerts Lipidâ€Lowering and Immunomodulatory Effects without Affecting Neointima Formation in Hyperlipidemic APOE*3â€Leiden.CETP Mice. Molecular Nutrition and Food Research, 2020, 64, e1900732.	1.5	39
28	Bacteroides thetaiotaomicron Fosters the Growth of Butyrate-Producing Anaerostipes caccae in the Presence of Lactose and Total Human Milk Carbohydrates. Microorganisms, 2020, 8, 1513.	1.6	26
29	The effect of bile acids on the growth and global gene expression profiles in Akkermansia muciniphila. Applied Microbiology and Biotechnology, 2020, 104, 10641-10653.	1.7	27
30	Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Scientific Reports, 2020, 10, 14330.	1.6	96
31	Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. Gut Microbes, 2020, 12, 1799733.	4.3	26
32	Dynamics of the bacterial gut microbiota in preterm and term infants after intravenous amoxicillin/ceftazidime treatment. BMC Pediatrics, 2020, 20, 195.	0.7	16
33	A multi-center assessment to compare residual allergenicity of partial hydrolyzed whey proteins in a murine model for cowâ∈™s milk allergy – Comparison to the single parameter guinea pig model. Toxicology Letters, 2020, 333, 312-321.	0.4	6
34	Investigating the Gut Microbiota Composition of Individuals with Attention-Deficit/Hyperactivity Disorder and Association with Symptoms. Microorganisms, 2020, 8, 406.	1.6	57
35	Bridging Bacteria and the Gut: Functional Aspects of Type IV Pili. Trends in Microbiology, 2020, 28, 340-348.	3. 5	50
36	Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome, 2020, 8, 44.	4.9	86

#	Article	IF	Citations
37	Shortâ€term changes of intestinal microbiota composition in preterm infants after two prophylactic doses of vancomycin. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1919-1920.	0.7	4
38	Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International Journal of Molecular Sciences, 2019, 20, 4673.	1.8	310
39	Antibiotics-induced monodominance of a novel gut bacterial order. Gut, 2019, 68, 1781-1790.	6.1	73
40	Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging $\text{Ercc1}\hat{a}^{\gamma}\hat{l}^{"}$ 7 mice. Immunity and Ageing, 2019, 16, 6.	1.8	130
41	The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Frontiers in Cellular and Infection Microbiology, 2019, 9, 85.	1.8	99
42	Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 1164-1171.	2.0	18
43	Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show allergen-specific tolerance and a modulated gut microbiota. Beneficial Microbes, 2019, 10, 165-178.	1.0	7
44	Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 2019, 45, 613-648.	2.7	30
45	Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. Journal of Antimicrobial Chemotherapy, 2019, 74, 782-786.	1.3	78
46	Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek, 2018, 111, 859-873.	0.7	90
47	Modelâ€driven design of a minimal medium for <i>Akkermansia muciniphila</i> confirms mucus adaptation. Microbial Biotechnology, 2018, 11, 476-485.	2.0	57
48	Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 475-483.	1.3	73
49	<i>Akkermansia muciniphila</i> induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut, 2018, 67, 1445-1453.	6.1	270
50	Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation. BMC Microbiology, 2018, 18, 110.	1.3	22
51	Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice. Aging, 2018, 10, 930-950.	1.4	46
52	Changes in intestinal gene expression and microbiota composition during late pregnancy are mouse strain dependent. Scientific Reports, 2018, 8, 10001.	1.6	22
53	Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biology of Sex Differences, 2018, 9, 26.	1.8	110
54	Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How?. Microorganisms, 2018, 6, 75.	1.6	286

#	Article	IF	CITATIONS
55	Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Research Notes, 2018, 11, 190.	0.6	76
56	Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, 106, 171-181.	1.3	775
57	Complete Genome Sequence of Akkermansia glycaniphila Strain Pyt ^T , a Mucin-Degrading Specialist of the Reticulated Python Gut. Genome Announcements, 2017, 5, .	0.8	16
58	Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut, 2017, 66, 1623-1630.	6.1	69
59	Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions. Beneficial Microbes, 2017, 8, 163-169.	1.0	28
60	Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 637-642.	1.0	191
61	Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions. Food Research International, 2017, 102, 372-379.	2.9	56
62	Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B $_{\rm Sub}$ Production by Intestinal Symbionts. MBio, 2017, 8, .	1.8	269
63	In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes, 2017, 8, 81-96.	1.0	80
64	More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome, 2017, 5, 78.	4.9	54
65	The effect of fiber and prebiotics on children's gastrointestinal disorders and microbiome. Expert Review of Gastroenterology and Hepatology, 2017, 11, 1031-1045.	1.4	54
66	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	1,118
67	Genome-Scale Model and Omics Analysis of Metabolic Capacities of <i>Akkermansia muciniphila</i> Reveal a Preferential Mucin-Degrading Lifestyle. Applied and Environmental Microbiology, 2017, 83, .	1.4	170
68	Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants. Molecular and Cellular Proteomics, 2017, 16, 1610-1620.	2.5	35
69	Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Medicine, 2017, 43, 59-68.	3.9	183
70	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
71	Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE, 2017, 12, e0188475.	1.1	163
72	Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 2017, 12, e0173004.	1.1	340

#	Article	IF	Citations
73	The gut microbiota as a modulator of innate immunity during melioidosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005548.	1.3	36
74	Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE, 2017, 12, e0181693.	1.1	53
75	The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS ONE, 2017, 12, e0184274.	1.1	102
76	Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1â°/ΰ7 Mice. Frontiers in Immunology, 2016, 7, 408.	2.2	49
77	Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders. Frontiers in Immunology, 2016, 7, 587.	2.2	24
78	Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Frontiers in Microbiology, 2016, 7, 1157.	1.5	106
79	Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. Npj Biofilms and Microbiomes, 2016, 2, 16009.	2.9	159
80	Adaptation of Akkermansia muciniphila to the Oxic-Anoxic Interface of the Mucus Layer. Applied and Environmental Microbiology, 2016, 82, 6983-6993.	1.4	101
81	Antibiotic-Induced Gut Microbiota Disruption Decreases TNF-α Release by Mononuclear Cells in Healthy Adults. Clinical and Translational Gastroenterology, 2016, 7, e186.	1.3	18
82	Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response. Beneficial Microbes, 2016, 7, 275-287.	1.0	10
83	Identification of Commensal Species Positively Correlated with Early Stress Responses to a Compromised Mucus Barrier. Inflammatory Bowel Diseases, 2016, 22, 826-840.	0.9	30
84	The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65, 575-583.	6.1	601
85	Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4614-4620.	0.8	68
86	Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota. Beneficial Microbes, 2015, 6, 271-276.	1.0	3
87	Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10038-10043.	3.3	323
88	Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Applied and Environmental Microbiology, 2015, 81, 3655-3662.	1.4	437
89	IL-22-STAT3 Pathway Plays a Key Role in the Maintenance of Ileal Homeostasis in Mice Lacking Secreted Mucus Barrier. Inflammatory Bowel Diseases, 2015, 21, 531-542.	0.9	46
90	<i>Akkermansia muciniphila</i> and <i>Helicobacter typhlonius</i> modulate intestinal tumor development in mice. Carcinogenesis, 2015, 36, 1388-1396.	1.3	87

#	Article	IF	Citations
91	Dietary Pectin–Derived Acidic Oligosaccharides Improve the Pulmonary Bacterial Clearance of <i>Pseudomonas aeruginosa </i> Lung Infection in Mice by Modulating Intestinal Microbiota and Immunity. Journal of Infectious Diseases, 2015, 211, 156-165.	1.9	43
92	Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. MBio, 2014, 5, .	1.8	376
93	The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatric Allergy and Immunology, 2014, 25, 428-438.	1.1	244
94	Dynamics of the Microbiota in Response to Host Infection. PLoS ONE, 2014, 9, e95534.	1.1	52
95	Glycobiome: Bacteria and mucus at the epithelial interface. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 25-38.	1.0	171
96	The intestinal microbiota: Importance for health and, potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 1-3.	1.0	1
97	Butyrate-producing <i>Clostridium</i> cluster XIVa species specifically colonize mucins in an <i>in vitro</i> gut model. ISME Journal, 2013, 7, 949-961.	4.4	501
98	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	3.3	3,474
99	Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology, 2013, 58, 108-119.	3.6	187
100	Comparative and Functional Metagenomics of Akkermansia muciniphila., 2013,, 1-5.		1
101	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	1.8	352
102	Microbes insideâ€"from diversity to function: the case of <i>Akkermansia</i> . ISME Journal, 2012, 6, 1449-1458.	4.4	551
103	PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes inHelicobacter hepaticus. European Journal of Microbiology and Immunology, 2011, 1, 215-222.	1.5	7
104	The role of specific IgG and complement in combating aprimary mucosal infection of the gut epithelium. European Journal of Microbiology and Immunology, 2011, 1, 311-318.	1.5	21
105	The <i>Helicobacter hepaticus hefA</i> Gene is Involved in Resistance to Amoxicillin. Helicobacter, 2009, 14, 72-79.	1.6	13
106	Expression of Phase Variable Surface Molecules of <i>Bacteroides</i> Species From Healthy and Clinical Stool. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, E15-6.	0.9	1
107	Iron-Responsive Repression of Urease Expression in Helicobacter hepaticus Is Mediated by the Transcriptional Regulator Fur. Infection and Immunity, 2007, 75, 745-752.	1.0	18
108	Metal-responsive gene regulation and metal transport in Helicobacter species. BioMetals, 2007, 20, 417-429.	1.8	18

#	Article	IF	CITATIONS
109	Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation. Gut, 2006, 55, 1678-1679.	6.1	41
110	Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology (United Kingdom), 2005, 151, 3989-3995.	0.7	31