Edmund John Railton Kelleher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201512/publications.pdf

Version: 2024-02-01

78 papers 3,989 citations

28 h-index

58 g-index

78 all docs 78 docs citations

78 times ranked

3480 citing authors

#	Article	IF	CITATIONS
1	A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Research, 2010, 3, 653-660.	5.8	351
2	Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature Communications, 2017, 8, 278.	5.8	311
3	Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS_2). Optics Express, 2014, 22, 31113.	1.7	310
4	Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express, 2012, 20, 25077.	1.7	272
5	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Research, 2015, 8, 1522-1534.	5.8	256
6	Wideband saturable absorption in few-layer molybdenum diselenide (MoSe_2) for Q-switching Yb-, Erand Tm-doped fiber lasers. Optics Express, 2015, 23, 20051.	1.7	252
7	2D Saturable Absorbers for Fibre Lasers. Applied Sciences (Switzerland), 2015, 5, 1440-1456.	1.3	198
8	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research, 2015, 3, A30.	3.4	185
9	Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS ₂ using multiphoton microscopy. 2D Materials, 2017, 4, 011006.	2.0	147
10	Nanosecond-pulse fiber lasers mode-locked with nanotubes. Applied Physics Letters, 2009, 95, .	1.5	130
11	Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence. Scientific Reports, 2016, 6, 28516.	1.6	112
12	Towards â€~smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Scientific Reports, 2016, 6, 37616.	1.6	100
13	Generation and direct measurement of giant chirp in a passively mode-locked laser. Optics Letters, 2009, 34, 3526.	1.7	94
14	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba5029.	4.7	89
15	Bismuth fiber integrated laser mode-locked by carbon nanotubes. Laser Physics Letters, 2010, 7, 790-794.	0.6	74
16	Using the E22 transition of carbon nanotubes for fiber laser mode-locking. Laser Physics Letters, 2011, 8, 144-149.	0.6	74
17	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express, 2013, 21, 23261.	1.7	74
18	Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 2014, 8, 4836-4847.	7.3	66

#	Article	IF	CITATIONS
19	Passive synchronization of all-fiber lasers through a common saturable absorber. Optics Letters, 2011, 36, 3984.	1.7	65
20	Ultrafast Raman laser mode-locked by nanotubes. Optics Letters, 2011, 36, 3996.	1.7	60
21	Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Optics Letters, 2017, 42, 2952.	1.7	37
22	Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes. Physical Review B, 2016, 94, .	1.1	35
23	Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber. Optics Letters, 2010, 35, 2320.	1.7	34
24	Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes. Optics Communications, 2011, 284, 2007-2011.	1.0	33
25	Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber. Optics Express, 2013, 21, 8437.	1.7	32
26	Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 502.	0.9	29
27	Surfactantâ€aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edgeâ€state saturable absorption. Physica Status Solidi (B): Basic Research, 2016, 253, 911-917.	0.7	29
28	Harmonic and single pulse operation of a Raman laser using graphene. Laser Physics Letters, 2012, 9, 223-228.	0.6	28
29	Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser. Optics Letters, 2015, 40, 387.	1.7	28
30	Visible Raman-Shifted Fiber Lasers for Biophotonic Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	1.9	28
31	High-power few-cycle THz generation at MHz repetition rates in an organic crystal. APL Photonics, 2020, 5, .	3.0	28
32	Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers. Optics Letters, 2016, 41, 2446.	1.7	27
33	Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation. Applied Physics Letters, 2018, 112, .	1.5	25
34	Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. IEEE Photonics Technology Letters, 2014, 26, 1672-1675.	1.3	24
35	Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Optics Letters, 2014, 39, 1398.	1.7	23
36	CW-pumped short pulsed 1.12 \hat{l} 4m Raman laser using carbon nanotubes. Laser Physics Letters, 2013, 10, 015101.	0.6	21

#	Article	IF	Citations
37	Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers. Optics Letters, 2014, 39, 2330.	1.7	21
38	Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes. Optics Express, 2010, 18, 16663.	1.7	20
39	Q-switched Fiber Laser with MoS2 Saturable Absorber. , 2014, , .		19
40	Duration-tunable picosecond source at 560  nm with watt-level average power. Optics Letters, 2015, 40, 3085.	1.7	19
41	Dark solitons in laser radiation build-up dynamics. Physical Review E, 2016, 93, 032221.	0.8	19
42	Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion. Optics Express, 2013, 21, 15826.	1.7	18
43	Attenuation of THz Beams: A "How to―Tutorial. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 878-904.	1.2	18
44	Near-infrared nanospectroscopy using a low-noise supercontinuum source. APL Photonics, 2021, 6, .	3.0	18
45	Stable Gain-Switched Thulium Fiber Laser With 140-nm Tuning Range. IEEE Photonics Technology Letters, 2016, 28, 1340-1343.	1.3	17
46	Ultrafast fibre laser sources: Examples of recent developments. Optical Fiber Technology, 2014, 20, 666-677.	1.4	16
47	MHz-repetition-rate, sub-mW, multi-octave THz wave generation in HMQ-TMS. Optics Express, 2020, 28, 9631.	1.7	16
48	Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm. Optics Express, 2015, 23, 15728.	1.7	15
49	Fission of solitons in continuous-wave supercontinuum. Optics Letters, 2012, 37, 5217.	1.7	14
50	Synchronously pumped photonic crystal fiber-based optical parametric oscillator. Optics Letters, 2012, 37, 3156.	1.7	13
51	Amplification of picosecond pulses and gigahertz signals in bismuth-doped fiber amplifiers. Optics Letters, 2011, 36, 1446.	1.7	10
52	Picosecond bismuth-doped fiber MOPFA for frequency conversion. Optics Letters, 2011, 36, 3792.	1.7	10
53	Nanosecond Pulse Generation in Lumped Normally Dispersive All-Fiber Mode-Locked Laser. IEEE Photonics Technology Letters, 2011, 23, 1379-1381.	1.3	9
54	Fiber-integrated 780 nm source for visible parametric generation. Optics Express, 2014, 22, 29726.	1.7	7

#	Article	IF	CITATIONS
55	Narrow Linewidth Bismuth-Doped All-Fiber Ring Laser. IEEE Photonics Technology Letters, 2010, 22, 793-795.	1.3	6
56	Pump wave coherence, modulation instability and their effect on continuous-wave supercontinua. Optical Fiber Technology, 2012, 18, 268-282.	1.4	6
57	Characterization of nonlinear saturation and mode-locking potential of ionically-doped colored glass filter for short-pulse fiber lasers. Optics Express, 2013, 21, 12562.	1.7	5
58	Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser. IEEE Photonics Journal, 2012, 4, 1058-1064.	1.0	4
59	Mode-locking by nanotubes of a Raman laser based on a highly doped GeO2 fiber. , 2012, , .		2
60	Wideband tunable, high-power, graphene mode-locked ultrafast lasers. , 2011, , .		1
61	Special Section Guest Editorial: 2-D Materials for Optics and Photonics. Optical Engineering, 2016, 55, 081301.	0.5	1
62	Broadband Nonlinear Photoresponse of Monolayer MoSe2., 2016,,.		1
63	Pulse Bunching in the Soliton Rain Regime of an Ultralong Fiber Laser Mediated by Forward Brillouin Scattering. , 2016, , .		1
64	Nanotube mode-locked, low repetition rate pulse source for fiber-based supercontinuum generation at low average pump power. , 2014, , .		1
65	Synchronously coupled fiber lasers and sum frequency generation using graphene composites. , 2014, ,		1
66	2 ns pulses from a fibre laser mode-locked by carbon nanotubes. , 2009, , .		0
67	Giant chirp oscillators: Modeling and experiment. , 2010, , .		0
68	Soliton-dispersive wave collisions in high average power supercontinuum generation. , 2010, , .		0
69	Nanotube-based passively mode-locked Ytterbium-pumped Raman laser. , 2011, , .		0
70	Broadband ultrafast pulse generation with double wall carbon nanotubes. , 2011, , .		0
71	High average power supercontinuum sources. , 2011, , .		0
72	Incoherent soliton fission driven supercontinuum generation pumped by partially coherent light., 2012,,.		0

#	Article	IF	CITATIONS
73	Compact and broadly tunable near-visible parametric wavelength converter based on polarization-maintaining photonic-crystal fiber. , 2013, , .		0
74	Long-cavity nanosecond thulium fiber laser: A compact source of energetic mid-IR pulses. , 2015, , .		0
75	Fiber-integrated second harmonic generation modules for visible and near-visible picosecond pulse generation. Proceedings of SPIE, 2015, , .	0.8	O
76	Visible Light Stimulated Brillouin Scattering in Small-Core Photonic Crystal Fibers. , 2014, , .		0
77	Enhancing the Efficacy of Collinear Optical Rectification for Broadband THz Radiation at MHz Repetition Rates., 2020,,.		O
78	Milliwatt-level multi-MHz THz wave generation in the organic crystal HMQTMS with a compressed fiber laser. , 2020, , .		0