Boleslaw T Karwowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920151/publications.pdf

Version: 2024-02-01

		840585	677027
36	538	11	22
papers	citations	h-index	g-index
36	36	36	617
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing $5\hat{a}\in^2$,8-Cyclo- $2\hat{a}\in^2$ -deoxyadenosine. Chemosensors, 2022, 10, 204.	1.8	0
2	How (5′S) and (5′R) 5′,8-Cyclo-2′-Deoxypurines Affect Base Excision Repair of Clustered DNA Damage Nuclear Extracts of xrs5 Cells? A Biochemical Study. Cells, 2021, 10, 725.	in 1.8	8
3	(5′S) 5′,8-Cyclo-2′-Deoxyadenosine Cannot Stop BER. Clustered DNA Lesion Studies. International Journal of Molecular Sciences, 2021, 22, 5934.	1.8	3
4	The influence of oxoG on the electronic properties of ds-DNA. Damage versus mismatch: A theoretical approach. Computational Biology and Chemistry, 2021, 92, 107485.	1.1	0
5	The Influence of $5\hat{a}\in^2\mathbf{R}$ and $5\hat{a}\in^2\mathbf{S}$ cdA and cdG on the Activity of BsmAl and SspI Restriction Enzymes. Molecules, 2021, 26, 3750.	1.7	2
6	When UDG and hAPE1 Meet Cyclopurines. How $(5\hat{a}\in^2\mathbb{R})$ and $(5\hat{a}\in^2\mathbb{S})$ $5\hat{a}\in^2$,8-Cyclo- $2\hat{a}\in^2$ -deoxyadenosine and $5\hat{a}\in^2$,8-Cyclo- $2\hat{a}\in^2$ -deoxyguanosine Affect UDG and hAPE1 Activity? Molecules, 2021, 26, 5177.	1.7	2
7	The Influence of 5′,8-Cyclo-2′-deoxypurines on the Mitochondrial Repair of Clustered DNA Damage in Xrs5 Cells: The Preliminary Study. Molecules, 2021, 26, 7042.	1.7	2
8	Effects of 5′,8′-Cyclo-2′-Deoxypurines on the Base Excision Repair of Clustered DNA Lesions in Nuclear Extracts of the XPC Cell Line. Cells, 2021, 10, 3254.	1.8	2
9	The role of AMPK in metabolism and its influence on DNA damage repair. Molecular Biology Reports, 2020, 47, 9075-9086.	1.0	25
10	The Influence of Single, Tandem, and Clustered DNA Damage on the Electronic Properties of the Double Helix: A Theoretical Study. Molecules, 2020, 25, 3126.	1.7	7
11	The Electronic Property Differences between dA::dG and dA::dGoxo. A Theoretical Approach. Molecules, 2020, 25, 3828.	1.7	0
12	Nutrition Can Help DNA Repair in the Case of Aging. Nutrients, 2020, 12, 3364.	1.7	22
13	Two Faces of Vitamin Câ€"Antioxidative and Pro-Oxidative Agent. Nutrients, 2020, 12, 1501.	1.7	169
14	Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach. Cells 2020, 9, 424.	;,1.8	2
15	The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules, 2020, 25, 2857.	1.7	49
16	8-Oxo-7,8-Dihydro-2′-Deoxyguanosine (8-oxodG) and 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) as a Potential Biomarker for Gestational Diabetes Mellitus (GDM) Development. Molecules, 2020, 25, 202.	1.7	47
17	8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a Cause of Autoimmune Thyroid Diseases (AITD) During Pregnancy?. Yale Journal of Biology and Medicine, 2020, 93, 501-515.	0.2	1
18	Review: immunoassays in DNA damage and instability detection. Cellular and Molecular Life Sciences, 2019, 76, 4689-4704.	2.4	25

#	Article	IF	Citations
19	The Influence of (5′R)- and (5′S)-5′,8-Cyclo-2′-Deoxyadenosine on UDG and hAPE1 Activity. Tandem Le are the Base Excision Repair System's Nightmare. Cells, 2019, 8, 1303.	sions 1.8	15
20	The cytotoxic effect of Ru(II) complexes with 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridyl)-1H-pyrazole-4-carboxylic acid methyl ester: Synthesis, X-ray structure and DNA damage potential. Polyhedron, 2019, 169, 228-238.	1.0	4
21	Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sciences, 2018, 195, 6-18.	2.0	26
22	The AT Interstrand Cross-Link: Structure, Electronic Properties, and Influence on Charge Transfer in dsDNA. Molecular Therapy - Nucleic Acids, 2018, 13, 665-685.	2.3	10
23	The Clustered DNA Lesions – Types, Pathways of Repair and Relevance to Human Health. Current Medicinal Chemistry, 2018, 25, 2722-2735.	1.2	24
24	Synthesis, Biological Activity and Preliminary in Silico ADMET Screening of Polyamine Conjugates with Bicyclic Systems. Molecules, 2017, 22, 794.	1.7	10
25	DNA Interaction Studies of Selected Polyamine Conjugates. International Journal of Molecular Sciences, 2016, 17, 1560.	1.8	15
26	The Influence of the Terminal Phosphorothioate Diester Bond on the DNA Oxidation Process. An Experimental and Theoretical Approach. Molecules, 2015, 20, 12400-12411.	1.7	2
27	The influence of phosphorothioate on charge migration in single and double stranded DNA: a theoretical approach. Physical Chemistry Chemical Physics, 2015, 17, 21507-21516.	1.3	11
28	Effects of $(5\hat{a}\in ^2S)$ - $5\hat{a}\in ^2$,8-cyclo- $2\hat{a}\in ^2$ -deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study. Organic and Biomolecular Chemistry, 2014, 12, 8671-8682.	1.5	14
29	The influence of $(5\hat{a} \in ^2R)$ and $(5\hat{a} \in ^2S)$ - $5\hat{a} \in ^2$,8-cyclo- $2\hat{a} \in ^2$ -deoxyadenosine for the electronic properties of nucleosid pairs. The theoretical quantum mechanics studies. Open Chemistry, 2013, 11, 1079-1090.	es 1.0	1
30	The role of (5′R) and (5′S) 5′,8-cyclo-2′-deoxyadenosine in ds-DNA structure. Computational and Theoretical Chemistry, 2013, 1010, 38-44.	1.1	8
31	The difference in stability between 5′R and 5′S diastereomers of 5′,8-cyclopurine-2′-deoxynucleosides. study in gaseous and aqueous phase. Open Chemistry, 2010, 8, 134-141.	DFT 1.0	2
32	Ionisation potential and electron affinity of free $5\hat{a}\in ^2$,8-cyclopurine- $2\hat{a}\in ^2$ -deoxynucleosides. DFT study in gaseous and aqueous phase. Open Chemistry, 2010, 8, 70-76.	1.0	4
33	Formation of 5′,8-cyclo-2′-deoxyadenosine in single strand DNA. Theoretical quantum mechanics study. Organic and Biomolecular Chemistry, 2010, 8, 1603.	1.5	7
34	5',8-Cyclo-2'-deoxyadenosine (cdA) formation by gamma-radiation. Theoretical quantum mechanics study Acta Biochimica Polonica, 2009, 56, .	0.3	6
35	5',8-Cyclo-2'-deoxyadenosine (cdA) formation by gamma-radiation. Theoretical quantum mechanics study. Acta Biochimica Polonica, 2009, 56, 655-62.	0.3	3
36	Effect of (5′S)-5′,8-cyclo-2′-deoxyadenosine on the conformation of di and trinucleotides. A NMR and DFT study. Organic and Biomolecular Chemistry, 2008, 6, 3408.	1.5	10