Elisa Panzarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201482/publications.pdf

Version: 2024-02-01

35	1,204	19	33
papers	citations	h-index	g-index
35	35	35	4713 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. Nanomaterials, 2021, 11, 2.	1.9	39
2	The dialogue between died and viable cells: in vitro and in vivo bystander effects and ¹ H-NMR-based metabolic profiling of soluble factors. Pure and Applied Chemistry, 2020, 92, 399-411.	0.9	0
3	Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine and Growth Factor Reviews, 2020, 51, 27-39.	3.2	45
4	Toxicity, Bioaccumulation and Biotransformation of Glucose-Capped Silver Nanoparticles in Green Microalgae Chlorella vulgaris. Nanomaterials, 2020, 10, 1377.	1.9	21
5	Molecular Characterization of Temozolomide-Treated and Non Temozolomide-Treated Glioblastoma Cells Released Extracellular Vesicles and Their Role in the Macrophage Response. International Journal of Molecular Sciences, 2020, 21, 8353.	1.8	14
6	Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules, 2020, 25, 1398.	1.7	5
7	Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Applied Sciences (Switzerland), 2020, 10, 947.	1.3	103
8	In vitro comparative study of the effects of silver and gold nanoparticles exploitable in the context of photodynamic therapy. AIP Conference Proceedings, 2018 , , .	0.3	2
9	Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. International Journal of Molecular Sciences, 2018, 19, 1305.	1.8	90
10	Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicology in Vitro, 2017, 41, 64-74.	1.1	47
11	Environmental Nanoremediation and Electron Microscopies. , 2017, , 115-136.		9
12	Cytotoxicity of \hat{l}^2 -D-glucose/sucrose-coated silver nanoparticles depends on cell type, nanoparticles concentration and time of incubation. AIP Conference Proceedings, 2016, , .	0.3	3
13	Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells. AIP Conference Proceedings, 2015, , .	0.3	6
14	Microscopies at the Nanoscale for Nano-Scale Drug Delivery Systems. Current Drug Targets, 2015, 16, 1512-1530.	1.0	10
15	Administration Dependent Antioxidant Effect of (i) Carica papaya (li) Seeds Water Extract. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-13.	0.5	24
16	Cytotoxicity of \hat{l}^2 -D-glucose coated silver nanoparticles on human lymphocytes. AIP Conference Proceedings, 2014, , .	0.3	13
17	Nanomaterial-Induced Autophagy: A New Reversal MDR Tool in Cancer Therapy?. Molecular Pharmaceutics, 2014, 11, 2527-2538.	2.3	55
18	Rose Bengal Acetate PhotoDynamic Therapy (RBAc-PDT) Induces Exposure and Release of Damage-Associated Molecular Patterns (DAMPs) in Human HeLa Cells. PLoS ONE, 2014, 9, e105778.	1.1	100

#	Article	IF	CITATIONS
19	<i>InÂvitro</i> and <i>inÂvivo</i> clearance of Rose Bengal Acetate-PhotoDynamic Therapy-induced autophagic and apoptotic cells. Experimental Biology and Medicine, 2013, 238, 765-778.	1.1	8
20	Silver and carbon nanoparticles toxicity in sea urchin Paracentrotus lividus embryos. BioNanoMaterials, $2013,14,\ldots$	1.4	13
21	Nanomaterials and Autophagy: New Insights in Cancer Treatment. Cancers, 2013, 5, 296-319.	1.7	62
22	Immunogenic Cell Death: Can It Be Exploited in PhotoDynamic Therapy for Cancer?. BioMed Research International, 2013, 2013, 1-18.	0.9	86
23	In Vitro Analysis of the Anti-Inflammatory Effect of Inhomogeneous Static Magnetic Field-Exposure on Human Macrophages and Lymphocytes. PLoS ONE, 2013, 8, e72374.	1.1	40
24	Magnetostatic Field System for Uniform Cell Cultures Exposure. PLoS ONE, 2013, 8, e72341.	1.1	5
25	High ordered biomineralization induced by carbon nanoparticles in the sea urchin <i>Paracentrotus lividus</i> . Nanotechnology, 2012, 23, 495104.	1.3	14
26	Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy. Cells, 2012, 1, 464-491.	1.8	60
27	Synthesis and <i>in vitro</i> Cytotoxicity of Glycans-Capped Silver Nanoparticles. Nanomaterials and Nanotechnology, 2011, 1, 10.	1.2	14
28	Overview of Cell Death Mechanisms Induced by Rose Bengal Acetate-Photodynamic Therapy. International Journal of Photoenergy, 2011, 2011, 1-11.	1.4	39
29	Rose Bengal Acetate photodynamic therapy-induced autophagy. Cancer Biology and Therapy, 2010, 10, 1048-1055.	1.5	24
30	The influence of a 6 mT static magnetic field on apoptotic cell phagocytosis depends on monocyte/macrophage differentiation. Experimental Biology and Medicine, 2010, 235, 1432-1441.	1.1	13
31	Morphofunctional study of 12â€ <i>O</i> àê€tetradecanoylâ€13â€phorbol acetate (TPA)â€induced differentiation of U937 cells under exposure to a 6 mT static magnetic field. Bioelectromagnetics, 2009, 30, 352-364.	0.9	23
32	Photodynamic Therapyâ€Induced Apoptosis of HeLa Cells. Annals of the New York Academy of Sciences, 2009, 1171, 617-626.	1.8	28
33	Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate. Journal of Photochemistry and Photobiology B: Biology, 2006, 83, 39-47.	1.7	28
34	Biological effects of 6 mT static magnetic fields: A comparative study in different cell types. Bioelectromagnetics, 2006, 27, 560-577.	0.9	95
35	Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics, 2005, 26, 275-286.	0.9	66